精英家教网 > 高中数学 > 题目详情

【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn=
(1)求证:数列{ }为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.

【答案】
(1)证明:数列{an}满足an>0,4(n+1)an2﹣nan+12=0,

= an+1,即 =2

∴数列{ }是以a1为首项,以2为公比的等比数列


(2)解:由(1)可得: = ,∴ =n 4n1

∵bn= ,∴b1= ,b2= ,b3=

∵数列{bn}是等差数列,∴2× = +

= +

化为:16t=t2+48,解得t=12或4


(3)解:数列{bn}是等差数列,由(2)可得:t=12或4.

①t=12时,bn= = ,Sn=

∵对任意的n∈N*,均存在m∈N*,使得8a12Sn﹣a14n2=16bm成立,

∴8 × ﹣a14n2=16×

= ,n=1时,化为:﹣ = >0,无解,舍去.

②t=4时,bn= = ,Sn=

对任意的n∈N*,均存在m∈N*,使得8a12Sn﹣a14n2=16bm成立,

∴8 × ﹣a14n2=16×

∴n =4m,

∴a1=2 .∵a1为正整数,∴ = k,k∈N*

∴满足条件的所有整数a1的值为{a1|a1=2 ,n∈N*,m∈N*,且 = k,k∈N*}.


【解析】(1)数列{an}满足an>0,4(n+1)an2﹣nan+12=0,化为: =2× ,即可证明.(2)由(1)可得: = ,可得 =n 4n1 . 数列{bn}满足bn= ,可得b1 , b2 , b3 , 利用数列{bn}是等差数列即可得出t.(3)根据(2)的结果分情况讨论t的值,化简8a12Sn﹣a14n2=16bm , 即可得出a1
【考点精析】利用等比数列的通项公式(及其变式)和数列的前n项和对题目进行判断即可得到答案,需要熟知通项公式:;数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF上一点,且DM⊥平面ACE.
(1)求BM的长;
(2)求二面角A﹣DM﹣B的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,
(1)证明:| a+ b|<
(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点坐标为F1(﹣1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M、N,则△F1MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=
(1)求边c的长;
(2)求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是(
A.命题“p∧q”为假命题,则p,q均为假命题
B.命题“?x∈(0,+∞),2x>1”的否定是“?x°∈(0,+∞),2≤1”
C.命题“若a>b,则a2>b2”的逆否命题是“若a2<b2 , 则a<b”
D.设x∈R,则“x> ”是“2x2+x﹣1>0”的必要而不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数f(x)=cosxsin2x,下列说法中正确的是
①y=f(x)的图象关于(π,0)中心对称;②y=f(x)的图象关于直线x= 对称
③y=f(x)的最大值是 ; ④f(x)即是奇函数,又是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知三点O(0,0),A(2, ),B(2 ).
(1)求经过O,A,B的圆C1的极坐标方程;
(2)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程为 (θ是参数),若圆C1与圆C2外切,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 设函数g(n)= ,若bn=g(2n+4),n∈N* , 则数列{bn}的前n(n≥2)项和Sn等于

查看答案和解析>>

同步练习册答案