【题目】如图,在三棱锥中,平面,为棱上的一点,且平面.
(1)证明:;
(2)设.与平面所成的角为.求二面角的大小.
科目:高中数学 来源: 题型:
【题目】2020年,新型冠状病毒引发的疫情牵动着亿万人的心,八方驰援战疫情,众志成城克时难,社会各界支援湖北共抗新型冠状病毒肺炎,重庆某医院派出3名医生,2名护士支援湖北,现从这5人中任选2人定点支援湖北某医院,则恰有1名医生和1名护士被选中的概率为( )
A.0.7B.0.4C.0.6D.0.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,直线的参数方程为(为参数),在以直角坐标系的原点为极点, 轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(Ⅰ)求曲线的直角坐标方程和直线的普通方程;
(Ⅱ)若直线与曲线相交于, 两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】美团外卖和百度外卖两家公司其“骑手”的日工资方案如下:美团外卖规定底薪70元,每单抽成1元;百度外卖规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元,假设同一公司的“骑手”一日送餐单数相同,现从两家公司个随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:
(Ⅰ)求百度外卖公司的“骑手”一日工资(单位:元)与送餐单数的函数关系;
(Ⅱ)若将频率视为概率,回答下列问题:
①记百度外卖的“骑手”日工资为(单位:元),求的分布列和数学期望;
②小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的右焦点为,且点在椭圆上.
⑴求椭圆的标准方程;
⑵已知动直线过点且与椭圆交于两点.试问轴上是否存在定点,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为的椭圆的左顶点为,左焦点为,及点,且、、成等比数列.
(1)求椭圆的方程;
(2)斜率不为的动直线过点且与椭圆相交于、两点,记,线段上的点满足,试求(为坐标原点)面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新型冠状病毒疫情期间,商业活动受到很大影响某小型零售连锁店总部统计了本地区50家加盟店2月份的零售情况,统计数据如图所示.据估计,平均销售收入比去年同期下降40%,则去年2月份这50家加盟店的平均销售收入约为( )
A.6.6万元B.3.96万元C.9.9万元D.7.92万元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com