精英家教网 > 高中数学 > 题目详情

【题目】如图是正方体的平面展开图,在这个正方体中, ①BM与ED平行;
②CN与BE是异面直线;
③CN与BM成60°角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是(

A.③
B.③④
C.①③
D.①③④

【答案】B
【解析】解:把正方体的平面展开图还原成正方体ABCA﹣EFMN,

得:对于①,BM与ED不平行,故①不正确;

对于②,CN∥BE,故②不正确;

对于③,∵BE∥CN,在等边三角形EBM中,可得∠EBM=60°,即CN与BM成60°角,故③正确;

对于④,∵BN在平面NDCM上的投影为CN,根据三垂线定理得DM与BN垂直,故④正确.

正确命题的序号是③④.故选:B

【考点精析】掌握棱柱的结构特征是解答本题的根本,需要知道两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列4个命题,其中正确的命题是 ①“ ”是“ 不共线”的充要条件;
②已知向量 是空间两个向量,若 ,则向量 的夹角为60°;
③抛物线y=﹣x2上的点到直线4x+3y﹣8=0的距离的最小值是
④与两圆A:(x+5)2+y2=49和圆B:(x﹣5)2+y2=1都外切的圆的圆心P的轨迹方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)解不等式|6﹣|2x+1||>1; (Ⅱ)若关于x的不等式|x+1|+|x﹣1|+3+x<m有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差为2,前n项和为Sn , 且S1、S2、S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=(﹣1)n1 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点到直线 的距离为 ,离心率 ,A,B是椭圆上的两动点,动点P满足 ,(其中λ为常数).
(1)求椭圆标准方程;
(2)当λ=1且直线AB与OP斜率均存在时,求|kAB|+|kOP|的最小值;
(3)若G是线段AB的中点,且kOAkOB=kOGkAB , 问是否存在常数λ和平面内两定点M,N,使得动点P满足PM+PN=18,若存在,求出λ的值和定点M,N;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: ,左焦点 ,且离心率 (Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N(M,N不是左、右顶点),且以MN为直径的圆经过椭圆C的右顶点A.求证:直线l过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于实数x的不等式﹣x2+bx+c<0的解集是{x|x<﹣3或x>2},则关于x的不等式cx2﹣bx﹣1>0的解集是(
A.(﹣
B.(﹣2,3)
C.(﹣∞,﹣ )∪( ,+∞)
D.(﹣∞,﹣2)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10﹣ ,t∈[0,24)
(Ⅰ)求实验室这一天的最大温差;
(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?

查看答案和解析>>

同步练习册答案