ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[-1£¬5]£¬²¿·Ö¶ÔÓ¦ÖµÈçÏÂ±í£®
x -1 0 4 5
f£¨x£© 1 2 2 1
f£¨x£©µÄµ¼º¯Êýy=f¡ä£¨x£©µÄͼÏóÈçͼËùʾ£ºÏÂÁйØÓÚf£¨x£©µÄÃüÌ⣺
¢Ùº¯Êýf£¨x£©ÊÇÖÜÆÚº¯Êý£»
¢Úº¯Êýf£¨x£©ÔÚ[0£¬2]ÊǼõº¯Êý£»
¢ÛÈç¹ûµ±x¡Ê[-1£¬t]ʱ£¬f£¨x£©µÄ×î´óÖµÊÇ2£¬ÄÇôtµÄ×î´óֵΪ4£»
¢Üº¯Êýy=f£¨x£©-aµÄÁãµã¸öÊý¿ÉÄÜΪ0¡¢1¡¢2¡¢3¡¢4¸ö£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
¢Ú¢Ü
¢Ú¢Ü
£®
·ÖÎö£ºÏÈÓɵ¼º¯ÊýµÄͼÏóºÍÔ­º¯ÊýµÄ¹Øϵ»­³öÔ­º¯ÊýµÄ´óÖÂͼÏó£¬ÔÙ½èÖúÓëͼÏóºÍµ¼º¯ÊýµÄͼÏ󣬶ÔËĸöÃüÌ⣬һһ½øÐÐÑéÖ¤£¬¶ÔÓÚ¼ÙÃüÌâ²ÉÓþٷ´ÀýµÄ·½·¨½øÐÐÅųý¼´¿ÉµÃµ½´ð°¸£®
½â´ð£º½â£ºÓɵ¼º¯ÊýµÄͼÏóºÍÔ­º¯ÊýµÄ¹ØϵµÃ£¬Ô­º¯ÊýµÄ´óÖÂͼÏóÈçͼ£º

ÓÉͼµÃ£º¡ßº¯ÊýµÄ¶¨ÒåÓòΪ±ÕÇø¼ä£¬¶øÖÜÆÚº¯ÊýµÄ¶¨ÒåÓòÒ»¶¨ÊÇÎÞ½çµÄ£¬¹Ê¢ÙΪ¼ÙÃüÌ⣻
¢ÚΪÕæÃüÌ⣮ÒòΪÔÚ[0£¬2]Éϵ¼º¯ÊýΪ¸º£¬¹ÊÔ­º¯ÊýµÝ¼õ£»
ÓÉÒÑÖªÖÐy=f¡ä£¨x£©µÄͼÏ󣬼°±íÖÐÊý¾Ý¿ÉµÃµ±x=0»òx=4ʱ£¬º¯ÊýÈ¡×î´óÖµ2£¬Èôx¡Ê[-1£¬t]ʱ£¬f£¨x£©µÄ×î´óÖµÊÇ2£¬ÄÇô0¡Üt¡Ü5£¬¹ÊtµÄ×î´óֵΪ5£¬¼´¢Û´íÎó
¡ßº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòΪ[-1£¬5]¹²ÓÐÁ½¸öµ¥µ÷ÔöÇø¼ä£¬Á½¸öµ¥µ÷¼õÇø¼ä£¬¹Êº¯Êýy=f£¨x£©-aµÄÁãµã¸öÊý¿ÉÄÜΪ0¡¢1¡¢2¡¢3¡¢4¸ö£¬¼´¢ÜÕýÈ·
¹Ê´ð°¸Îª£º¢Ú¢Ü
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµ¼º¯ÊýºÍÔ­º¯ÊýµÄµ¥µ÷ÐÔÖ®¼äµÄ¹Øϵ£®¶þÕßÖ®¼äµÄ¹ØϵÊÇ£ºµ¼º¯ÊýΪÕý£¬Ô­º¯ÊýµÝÔö£»µ¼º¯ÊýΪ¸º£¬Ô­º¯ÊýµÝ¼õ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=log3
3
x
1-x
£¬M(x1£¬y1)£¬N(x2£¬y2)
ÊÇf£¨x£©Í¼ÏóÉϵÄÁ½µã£¬ºá×ø±êΪ
1
2
µÄµãPÂú×ã2
OP
=
OM
+
ON
£¨OΪ×ø±êÔ­µã£©£®
£¨¢ñ£©ÇóÖ¤£ºy1+y2Ϊ¶¨Öµ£»
£¨¢ò£©ÈôSn=f(
1
n
)+f(
2
n
)+¡­+f(
n-1
n
)
£¬ÆäÖÐn¡ÊN*£¬ÇÒn¡Ý2£¬ÇóSn£»
£¨¢ó£©ÒÑÖªan=
1
6
£¬                          n=1
1
4(Sn+1)(Sn+1+1)
£¬n¡Ý2
£¬ÆäÖÐn¡ÊN*£¬TnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÈôTn£¼m£¨Sn+1+1£©¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐ˵·¨ÕýÈ·µÄÓУ¨¡¡¡¡£©¸ö£®
¢ÙÒÑÖªº¯Êýf£¨x£©ÔÚ£¨a£¬b£©Äڿɵ¼£¬Èôf£¨x£©ÔÚ£¨a£¬b£©ÄÚµ¥µ÷µÝÔö£¬Ôò¶ÔÈÎÒâµÄ?x¡Ê£¨a£¬b£©£¬ÓÐf¡ä£¨x£©£¾0£®
¢Úº¯Êýf£¨x£©Í¼ÏóÔÚµãP´¦µÄÇÐÏß´æÔÚ£¬Ôòº¯Êýf£¨x£©ÔÚµãP´¦µÄµ¼Êý´æÔÚ£»·´Ö®Èôº¯Êýf£¨x£©ÔÚµãP´¦µÄµ¼Êý´æÔÚ£¬Ôòº¯Êýf£¨x£©Í¼ÏóÔÚµãP´¦µÄÇÐÏß´æÔÚ£®
¢ÛÒòΪ3£¾2£¬ËùÒÔ3+i£¾2+i£¬ÆäÖÐiΪÐéÊýµ¥Î»£®
¢Ü¶¨»ý·Ö¶¨Òå¿ÉÒÔ·ÖΪ£º·Ö¸î¡¢½üËÆ´úÌæ¡¢ÇóºÍ¡¢È¡¼«ÏÞËIJ½£¬¶ÔÇóºÍIn=
n
i=1
f(¦Îi)¡÷x
ÖЦÎiµÄÑ¡È¡ÊÇÈÎÒâµÄ£¬ÇÒIn½öÓÚnÓйأ®
¢ÝÒÑÖª2i-3ÊÇ·½³Ì2x2+px+q=0µÄÒ»¸ö¸ù£¬ÔòʵÊýp£¬qµÄÖµ·Ö±ðÊÇ12£¬26£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=sin£¨2x-
¦Ð
6
£©£¬g£¨x£©=sin£¨2x+
¦Ð
3
£©£¬Ö±Ïßy=mÓëÁ½¸öÏàÁÚº¯ÊýµÄ½»µãΪA£¬B£¬Èôm±ä»¯Ê±£¬ABµÄ³¤¶ÈÊÇÒ»¸ö¶¨Öµ£¬ÔòABµÄÖµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¢ñ£©ÒÑÖªº¯Êýf£¨x£©=x3-x£¬ÆäͼÏó¼ÇΪÇúÏßC£®
£¨i£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨ii£©Ö¤Ã÷£ºÈô¶ÔÓÚÈÎÒâ·ÇÁãʵÊýx1£¬ÇúÏßCÓëÆäÔÚµãP1£¨x1£¬f£¨x1£©£©´¦µÄÇÐÏß½»ÓÚÁíÒ»µãP2£¨x2£¬f£¨x2£©£©£¬ÇúÏßCÓëÆäÔÚµãP2£¨x2£¬f£¨x2£©£©´¦µÄÇÐÏß½»ÓÚÁíÒ»µãP3£¨x3£¬f£¨x3£©£©£¬Ï߶ÎP1P2£¬P2P3ÓëÇúÏßCËùΧ³É·â±ÕͼÐεÄÃæ»ý¼ÇΪS1£¬S2£®Ôò
S1S2
Ϊ¶¨Öµ£»
£¨¢ò£©¶ÔÓÚÒ»°ãµÄÈý´Îº¯Êýg£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£¬Çë¸ø³öÀàËÆÓÚ£¨¢ñ£©£¨ii£©µÄÕýÈ·ÃüÌ⣬²¢ÓèÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x3-ax+b´æÔÚ¼«Öµµã£®
£¨1£©ÇóaµÄÈ¡Öµ·¶Î§£»
£¨2£©¹ýÇúÏßy=f£¨x£©ÍâµÄµãP£¨1£¬0£©×÷ÇúÏßy=f£¨x£©µÄÇÐÏߣ¬Ëù×÷ÇÐÏßÇ¡ÓÐÁ½Ìõ£¬Çеã·Ö±ðΪA¡¢B£®
£¨¢¡£©Ö¤Ã÷£ºa=b£»
£¨¢¢£©ÇëÎÊ¡÷PABµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó´Ë¶¨Öµ£»Èô²»ÊÇÇó³öÃæ»ýµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸