精英家教网 > 高中数学 > 题目详情

【题目】已知a为实数,函数f(x)=aln x+x2-4x.

(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;

(2)设g(x)=(a-2)x,若x0,使得f(x0)≤g(x0)成立,求实数a的取值范围.

【答案】(1)见解析;(2)

【解析】

(1)根据反证法求解,利用求得后再根据函数的单调性判断,可得结论不成立.(2)问题等价于x0,使得(x0-ln x0)a≥-2x0成立,经验证可得x0-ln x0>0,分离参数后得到x0,使得成立”,然后令求出的最小值后可得所求的范围

(1)由题意得函数f(x)的定义域为(0,+∞),

∵f(x)=aln x+x2-4x,

f′(x)=+2x-4=

假设存在实数a,使f(x)x=1处取得极值

解得a=2,

此时,f′(x)=

x>0,f′(x)≥0恒成立

∴ f(x)(0,+∞)上单调递增

∴ x=1不是f(x)的极值点.

故不存在实数a,使得f(x)x=1处取得极值.

(2)f(x0)≤g(x0),(x0-ln x0)a≥x-2x0

F(x)=x-ln x(x>0),F′(x)= (x>0),

0<x<1,F′(x)<0,F(x)单调递减;

x>1,F′(x)>0,F(x)单调递增.

∴ F(x)>F(1)=1>0,

∴ a≥

G(x)=,x∈

∴G′(x)=

∵ x∈

∴ 2-2ln x=2(1-ln x)≥0,

∴ x -2ln x+2>0,

x∈,G′(x)<0,G(x)单调递减;

x∈(1,e),G′(x)>0,G(x)单调递增

∴ G(x)min=G(1)=-1

∴ a≥G(x)min=-1

故实数a的取值范围为[-1,+∞)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】大学的生活丰富多彩,很多学生除了学习本专业的必修课外,还会选择一些选修课来充实自已.甲同学调查了自己班上的名同学学习选修课的情况,并作出如下表格:

每人选择选修课科数

频数

1)求甲同学班上人均学习选修课科数:

2)甲同学和乙同学的某门选修课是在同一个班,且该门选修课开始上课的时间是早上,已知甲同学每次上课都会在之间的任意时刻到达教室,乙同学每次上课都会在之间的任意时刻到达教室,求连续天内,甲同学比乙同学早到教室的天数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为上一点.

(1)求椭圆的方程;

(2)设分别关于两坐标轴及坐标原点的对称点,平行于的直线于异于的两点.点关于原点的对称点为.证明:直线轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情传播,做好重点人群的预防工作,某地区共统计返乡人员人,其中岁及以上的共有.人中确诊的有名,其中岁以下的人占.

确诊患新冠肺炎

未确诊患新冠肺炎

合计

50岁及以上

40

50岁以下

合计

10

100

1)试估计岁及以上的返乡人员感染新型冠状病毒引起的肺炎的概率;

2)请将下面的列联表补充完整,并判断是否有%的把握认为是否确诊患新冠肺炎与年龄有关;

参考表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线与曲线,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)写出曲线的极坐标方程;

2)在极坐标系中,已知的公共点分别为,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201835日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自201811日至20201231日,对购置的新能源汽车免征车辆购置税.新能源汽车销售的春天来了!从衡阳地区某品牌新能源汽车销售公司了解到,为了帮助品牌迅速占领市场,他们采取了保证公司正常运营的前提下实行薄利多销的营销策略(即销售单价随日销量(台)变化而有所变化),该公司的日盈利(万元),经过一段时间的销售得到的一组统计数据如下表:

日销量

1

2

3

4

5

日盈利万元

6

13

17

20

22

将上述数据制成散点图如图所示:

1)根据散点图判断中,哪个模型更适合刻画之间的关系?并从函数增长趋势方面给出简单的理由;

2)根据你的判断及下面的数据和公式,求出关于的回归方程,并预测当日销量时,日盈利是多少?

参考公式及数据:线性回归方程,其中

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且都有,满足的实数有且只有个,给出下述四个结论:

①满足题目条件的实数有且只有个;②满足题目条件的实数有且只有个;

上单调递增;④的取值范围是

其中所有正确结论的编号是( )

A.①④B.②③C.①②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的极小值;

(2)求证:当时,.

查看答案和解析>>

同步练习册答案