精英家教网 > 高中数学 > 题目详情
集合A={x|y=ln(x-1)},B=(x∈N*|x(x-3)≤0},则A∩B=(  )
分析:求出A中函数的值域域,确定出A,求出集合B中不等式解集的正整数解,确定出B,求出A与B的交集即可.
解答:解:由集合A中的函数y=ln(x-1),得到x-1>0,
解得:x>1,即A=(1,+∞);
由集合B中的不等式x(x-3)≤0,得到0≤x≤3,
∴x=1,2,3,即B={1,2,3},
则A∩B={2,3}.
故选B
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的题号为
 

①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,则-3≤a≤3
②函数y=f(x)与直线x=l的交点个数为0或l
③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称
a∈(
14
,+∞)
时,函数y=lg(x2+x+a)的值域为R;
⑤与函数关于点(1,-1)对称的函数为y=-f(2-x).

查看答案和解析>>

科目:高中数学 来源: 题型:

4、集合A={x|x=3k-2,k∈Z},B={y|y=3l+1,l∈Z},S={y|y=6M+1,M∈Z}之间的关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|y=1og3(2-x)},N={x|l≤x≤3},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x,y|y=ax+1},B={x,y|y=|x|},若A∩B的子集恰有2个,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的为
①③④⑤
①③④⑤

①函数y=f(x)与直线x=1的交点个数为0或l;
②集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,则-3≤a≤3;
③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称;
④函数y=lg(x2+x+a)的值域为R 的充要条件是:a∈(-∞,
14
]

⑤与函数y=f(x)-2关于点(1,-1)对称的函数为y=-f(2-x).

查看答案和解析>>

同步练习册答案