精英家教网 > 高中数学 > 题目详情
17.已知动点P到点(2,0)的距离比到直线x=-3的距离小1,求动点P的轨迹方程.

分析 把直线x=-3向右平移一个单位变为x=-2,此时点P到直线x=-2的距离等于它到点(2,0)的距离,即可得到点P的轨迹方程.

解答 解:因为动点P到点(2,0)的距离比到直线x=-3的距离小1,
所以点P到直线x=-2的距离等于它到点(2,0)的距离,
因此点P的轨迹为抛物线,方程为y2=8x.

点评 本题考查点P的轨迹方程,考查抛物线的定义,正确运用抛物线的定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Acos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,其中M,P分别是函数f(x)的图象与坐标轴的交点,N是函数f(x)的图象的一个最低点,若点N,P的横坐标分别为$\frac{5π}{8}$,$\frac{11π}{8}$,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2$\sqrt{2}$,则下列说法正确的个数为(  )
①A=±2;
②函数f(x)在[$\frac{9π}{4}$,$\frac{21π}{8}$]上单调递减;
③要得到函数f(x)的图象,只需将函数y=4sinxcosx的图象向左平移$\frac{π}{8}$个单位.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知?ABCD中,点E是对角线AC上靠近A的一个三等分点,设$\overrightarrow{EA}$=a,$\overrightarrow{EB}$=b,则向量$\overrightarrow{BC}$等于(  )
A.2a+bB.-$\frac{1}{2}$a-bC.$\frac{1}{2}$b-2aD.-b-2a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.当x→0+时,无穷小量f(x)=${∫}_{0}^{{X}^{2}}$sintdt是无穷小量x3的(  )
A.高阶无穷小量B.低阶无穷小量
C.同阶但非等价无穷小量D.等价无穷小量

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,终边落在直线y=±x上的角α的集合是(  )
A.{α|α=k•360°+45°,k∈Z}B.{α|α=k•180°+45°,k∈Z}
C.{α|α=k•180°-45°,k∈Z}D.{α|α=k•90°+45°,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:α∥β,点P是平面α,β外一点,从点P引三条不共面的射线PA,PB,PC,与平面α分别相交于点A,B,C,与平面β分别相交于A′,B′,C′,求证:△ABC∽△A′B′C′.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和抛物线y2=2px(p>0)相交于A、B两点,直线AB过抛物线的焦点F1,且|AB|=8,椭圆的离心率为$\frac{\sqrt{2}}{2}$.
(I)求椭圆和抛物线的标准方程;
(Ⅱ)是否存在过(-2,0)与抛物线相切且被椭圆截得的弦CD的长恰为$\frac{20\sqrt{2}}{3}$的直线,若不存在.请说明理由;若存在,请求出直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=ax3+bsinx+5,且f(7)=9,则f(-7)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,正方体棱长为4,M,P分别为A1B1,B1C1的中点,设点D,M,P三点的平面与棱CC1交于点N,求PM+PN的值.

查看答案和解析>>

同步练习册答案