【题目】已知函数,.
(1)若,求的最大值;
(2)当时,求证:.
科目:高中数学 来源: 题型:
【题目】已知是由非负整数组成的无穷数列,对每一个正整数,该数列前项的最大值记为,第项之后各项的最小值记为,记.
(1)若数列的通项公式为,求数列的通项公式;
(2)证明:“数列单调递增”是“”的充要条件;
(3)若对任意恒成立,证明:数列的通项公式为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)写出的普通方程和的直角坐标方程;
(2)若与相交于两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个x,y都小于1的正实数对,再统计其中x,y能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线.
(Ⅰ)求的方程;
(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于,两点,当圆的半径最长时,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知倾斜角为的直线过点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,直线与曲线分别交于、两点.
(1)写出直线的参数方程和曲线的直角坐标方程;
(2)若,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓后要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现三次音乐获得150分,出现两次音乐获得100分,出现一次音乐获得50分,没有出现音乐则获得-300分.设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
(1)若一盘游戏中仅出现一次音乐的概率为,求的最大值点;
(2)以(1)中确定的作为的值,玩3盘游戏,出现音乐的盘数为随机变量,求每盘游戏出现音乐的概率,及随机变量的期望;
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:).经统计,高度在区间内,将其按,,,,,分成6组,制成如图所示的频率分布直方图,其中高度不低于的树苗为优质树苗.
附:
,其中
(1)求频率分布直方图中的值;
(2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下列联表所示,将列联表补充完整,并根据列联表判断是否有%的把握认为优质树苗与地区有关?
甲地区 | 乙地区 | 合计 | |
优质树苗 | 5 | ||
非优质树苗 | 25 | ||
合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.
(1)求甲、乙两位同学总共正确作答3个题目的概率;
(2)若甲、乙两位同学答对题目个数分别是,,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和的期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com