已知盒中有10个灯泡,其中8个正品,2个次品。需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止。设ξ为取出的次数,求P(ξ=4)=
A. | B. | C. | D. |
B
解析试题分析:题意知每次取1件产品,至少需2次,即ξ最小为2,有2件次品,当前2次取得的都是次品时ξ=4,得到变量的取值,当变量是2时,表示第一次取出正品,第二次取出也是正品,根据相互独立事件同时发生的概率公式得到分布列,写出期望.解:由题意知每次取1件产品,∴至少需2次,即ξ最小为2,有2件次品,当前2次取得的都是次品时,ξ=4,∴ξ可以取2,3,4当变量是2时,表示第一次取出正品,第二次取出也是正品,根据相互独立事件同时发生的概率公式得到P(ξ=4)=1- ,故答案为B
考点:独立事件概率
点评:本试题考查运用概率知识解决实际问题的能力,理解独立事件概率的乘法公式,属于基础题。
科目:高中数学 来源: 题型:单选题
某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为( )
A.0.99 | B.0.98 | C.0.97 | D.0.96 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
给出以下四个说法:
①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
②在刻画回归模型的拟合效果时,相关指数的值越大,说明拟合的效果越好;
③设随机变量服从正态分布,则;
④对分类变量与,若它们的随机变量的观测值越小,则判断“与有关系”的把握程度越大.
其中正确的说法是 ( )
A.①④ | B.②③ | C.①③ | D.②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175]cm的概率为0.5,那么该同学的身高超过175cm的概率为 ( )
A.0.8 | B.0.7 | C.0.3 | D.0.2 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
箱中有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中重新取球,若取出白球,则停止取球,那么在第四次取球之后停止的概率为( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com