精英家教网 > 高中数学 > 题目详情
据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
态度
调查人群
应该取消应该保留无所谓
在校学生2100人120人y人
社会人士600人x人z人
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)已知y≥657,z≥55,若所选择的在校学生的人数低于被调查人群总数的80%,则认为本次调查“失效”,求本次调查“失效”的概率.
考点:列举法计算基本事件数及事件发生的概率,分层抽样方法
专题:概率与统计
分析:(Ⅰ)先由抽到持“应该保留”态度的人的概率为0.05,由已知条件求出x,再求出持“无所谓”态度的人数,由此利用抽样比能求出应在“无所谓”态度抽取的人数.
(Ⅱ)由y+z=720,y≥657,z≥55,用列举法求得满足条件的(y,z)有9种,若调查失效,则2100+120+y<3600×0.8,解得y<660,列举求得调查失效的情况共3种,由此求得调查失效的概率.
解答: 解:(I)∵抽到持“应该保留”态度的人的概率为0.05,
120+x
3600
=0.05,解得x=60.  
∴持“无所谓”态度的人数共有3600-2100-120-600-60=720. 
∴应在“无所谓”态度抽取720×
360
3600
=72人. )
(Ⅱ)∵y+z=720,y≥657,z≥55,故满足条件的(y,z)有:
(657,63),(658,62),(659,61),(660,60),(661,59),(662,58),(663,57),(664,56),(665,55)共9种. 
记本次调查“失效”为事件A,若调查失效,则2100+120+y<3600×0.8,解得y<660.
∴事件A包含:(657,63),(658,62),(659,61)共3种.
∴P(A)=
3
9
=
1
3
点评:本题主要考查古典概型及其概率计算公式的应用,列举法,是解决古典概型问题的一种重要的解题方法.还考查了分层抽样的定义和方法,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

方程
x2
k-3
+
y2
2-k
=1
表示焦点在y轴的双曲线,则k的取值范围是(  )
A、k<3B、k<2
C、2<k<3D、k>2

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的结果为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的方程为
x2
a2
-
y2
b2
=1(a,b>0),其离心率为e,直线l与双曲线C交于A、B两点,线段AB中点M在第一象限,并且在抛物线y2=2px(p>0)上,且M到抛物线焦点距离为p,则直线l的斜率为(  )
A、
e2-1
2
B、e 2-1
C、
e2+1
2
D、e 2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

a,b,c分别为△ABC三个内角A,B,C的对边,bcosC+
3
bsinC-a-c=0
(1)求证A,B,C成等差数列;
(2)若a=2,△ABC的面积为
3
,求b,c;
(3)若a,b,c成等比数列,求sinAsinC的值;
(4)求sinA+sinC的取值范围;
(5)若b=
3
,求2a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x∈R,向量
a
=(x,1),
b
=(1,-2),且
a
b
,则|
a
+
b
|=(  )
A、
10
B、
11
C、2
3
D、
13

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax+1,(a>0且a≠1)
(1)当a=3,x∈[-1,2]时,求函数f(x)的值域;
(2)求不等式f(x)≥1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象.
(1)确定它的解析式;
(2)写出它的对称轴方程及对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,曲线C1:ρcosθ=
2
与曲线C2:ρ2cos2θ=1相交于A,B两点,则|AB|=
 

查看答案和解析>>

同步练习册答案