【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,AB=2,∠BAD=60°,M是PD的中点.
(Ⅰ)求证:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)当三棱锥C﹣PBD的体积等于 时,求PA的长.
【答案】(Ⅰ)见证明;(Ⅱ)见证明(Ⅲ)
【解析】
(Ⅰ)先证明OM∥PB,再证明OM∥平面PAB; (Ⅱ)先证明BD⊥平面PAC,再证明平面PBD⊥平面PAC;(Ⅲ)根据求出PA的长.
(Ⅰ)
证明:在△PBD中,因为O,M分别是BD,PD的中点,
所以OM∥PB.又OM 平面PAB, PB平面PAB,
所以OM∥平面PAB.
(Ⅱ)因为底面ABCD是菱形,所以BD⊥AC.
因为PA⊥平面ABCD,BD平面ABCD,
所以PA⊥BD.又AC∩PA=A,
所以BD⊥平面PAC.
又BD平面PBD,
所以平面PBD⊥平面PAC.
(Ⅲ)因为底面ABCD是菱形,且AB=2,∠BAD=60°,
所以
又 ,三棱锥的高为PA,
所以 ,解得 .
科目:高中数学 来源: 题型:
【题目】已知函数,其中.
(1)若曲线在点处的切线与直线平行,求与满足的关系;
(2)当时,讨论的单调性;
(3)当时,对任意的,总有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,(为常数)
(1)若
①求函数在区间上的最大值及最小值。
②若过点可作函数的三条不同的切线,求实数的取值范围。
(2)当时,不等式恒成立,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)的最小值为﹣4,且关于x的不等式f(x)≤0的解集为{x|﹣1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥S-ABC中,SA ⊥底面ABC,AC=AB=SA=2,AC ⊥AB,D,E分别是AC,BC的中点,F在SE上,且SF=2FE.
(Ⅰ)求异面直线AF与DE所成角的余弦值;
(Ⅱ)求证:AF⊥平面SBC;
(Ⅲ)设G为线段DE的中点,求直线AG与平面SBC所成角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆的左焦点为,椭圆上任意点到的最远距离是,过直线与轴的交点任作一条斜率不为零的直线与椭圆交于不同的两点、,点关于轴的对称点为.
(1)求椭圆的方程;
(2)求证:、、三点共线;
(3)求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com