精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线ACBD的交点,AB=2,∠BAD=60°MPD的中点.

(Ⅰ)求证:OM∥平面PAB

(Ⅱ)平面PBD⊥平面PAC

(Ⅲ)当三棱锥CPBD的体积等于 时,求PA的长.

【答案】(Ⅰ)见证明;(Ⅱ)见证明(Ⅲ)

【解析】

(Ⅰ)先证明OMPB再证明OM平面PAB; (Ⅱ)先证明BD⊥平面PAC,再证明平面PBD⊥平面PAC;(Ⅲ)根据求出PA的长.

(Ⅰ)

证明:在△PBD中,因为OM分别是BDPD的中点,

所以OMPB.又OM 平面PAB, PB平面PAB

所以OM∥平面PAB

(Ⅱ)因为底面ABCD是菱形,所以BDAC

因为PA⊥平面ABCDBD平面ABCD

所以PABD.又AC∩PA=A

所以BD⊥平面PAC

BD平面PBD

所以平面PBD⊥平面PAC

(Ⅲ)因为底面ABCD是菱形,且AB=2,∠BAD=60°

所以

,三棱锥的高为PA

所以 ,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若曲线在点处的切线与直线平行,求满足的关系;

(2)当时,讨论的单调性;

(3)当时,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(为常数)

(1)若

①求函数在区间上的最大值及最小值。

②若过点可作函数的三条不同的切线,求实数的取值范围。

(2)当时,不等式恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)的最小值为﹣4,且关于x的不等式fx)≤0的解集为{x|1x3xR}

1)求函数fx)的解析式;

2)求函数gx的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S-ABC中,SA ⊥底面ABCAC=AB=SA=2,ACABDE分别是ACBC的中点,FSE上,且SF=2FE.

(Ⅰ)求异面直线AFDE所成角的余弦值;

(Ⅱ)求证:AF⊥平面SBC

(Ⅲ)设G为线段DE的中点,求直线AG与平面SBC所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线在点处的切线经过点(0,1),求实数的值;

(Ⅱ)求证:当时,函数至多有一个极值点;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,取得极值,求的值并判断是极大值点还是极小值点;

当函数有两个极值点,且时,总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆的左焦点为,椭圆上任意点到的最远距离是,过直线轴的交点任作一条斜率不为零的直线与椭圆交于不同的两点,点关于轴的对称点为.

(1)求椭圆的方程;

(2)求证:三点共线;

(3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)当为何值时,直线是曲线的切线;

(2)若不等式上恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案