精英家教网 > 高中数学 > 题目详情

【题目】已知圆C:(x﹣6)2+(y﹣8)2=1和两点A(﹣m,0),B(m,0)(m>0),若对圆上任意一点P,都有∠APB<90°,则m的取值范围是(
A.(9,10)
B.(1,9)
C.(0,9)
D.(9,11)

【答案】D
【解析】解:圆C:(x﹣6)2+(y﹣8)2=1的圆心C(6,8),半径r=1, 设P(6+cosθ,8+sinθ),
∵A(﹣m,0),B(m,0)(m>0),
=(﹣m﹣6﹣cosθ,﹣8﹣sinθ), =(m﹣6﹣cosθ,﹣8﹣sinθ),
∵对圆上任意一点P,都有∠APB<90°,
=(﹣m﹣6﹣cosθ)(m﹣6﹣cosθ)+(﹣8﹣sinθ)2
=101+16sinθ+12cosθ﹣m2=20sin(θ+α)+101﹣m2>0.(tanα= ),
∴m2<20sin(θ+α)+101,
由m>0,解得9<m<11.
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正三角形的边长为,将它沿高翻折,使点与点间的距离为,此时四面体外接球表面积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,曲线C的参数方程为 (t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为 . (Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)=(x﹣1)2 , 且当x≤1时,恒有f'(x)+2<x.若 ,则实数m的取值范围是(
A.(﹣∞,1]
B.
C.[1,+∞)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3 x2+logax,(a>0且a≠1)为定义域上的增函数,f'(x)是函数f(x)的导数,且f'(x)的最小值小于等于0. (Ⅰ)求a的值;
(Ⅱ)设函数 ,且g(x1)+g(x2)=0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,满足
(1)求∠ABC;
(2)若 ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学上称函数y=kx+b(k,b∈R,k≠0)为线性函数.对于非线性可导函数f(x),在点x0附近一点x的函数值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x﹣x0).利用这一方法, 的近似代替值(
A.大于m
B.小于m
C.等于m
D.与m的大小关系无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1(﹣c,0)、F2(c、0)分别是椭圆G: + =1(0<b<a<3)的左、右焦点,点P(2, )是椭圆G上一点,且|PF1|﹣|PF2|=a.
(1)求椭圆G的方程;
(2)设直线l与椭圆G相交于A、B两点,若 ,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)ex ax2(a∈R).
(1)当a≤1时,求f(x)的单调区间;
(2)当x∈(0,+∞)时,y=f′(x)的图象恒在y=ax3+x﹣(a﹣1)x的图象上方,求a的取值范围.

查看答案和解析>>

同步练习册答案