精英家教网 > 高中数学 > 题目详情

【题目】微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下抢到的红包个数进行统计,得到如表数据:

手机品牌型号

甲品牌(个

4

3

8

6

12

乙品牌(个

5

7

9

4

3

手机品牌红包个数

非优

合计

乙品牌(个

合计

1)如果抢到红包个数超过5个的手机型号为“优”,否则“非优”,请完成上述列联表,据此判断是否有的把握认为抢到的红包个数与手机品牌有关?

2)如果不考虑其它因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量的分布列及数学期望.

下面临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

<>2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

【答案】1)列联表见解析,没有;(2)分布列见解析,.

【解析】

1)根据题意填写列表联。计算观察值,对照临界值得出结论.

2)由题意知随机变量的所有可能取值为123,分别计算出其概率,列出其分布列,可得数学期望.

解:(1)根据题意,填写列联表如下,

手机品牌红包个数

非优

合计

甲品牌(个

3

2

5

乙品牌(个

2

3

5

合计

5

5

10

计算

没有的把握认为抢到的红包个数与手机品牌有关;

2)由题意知随机变量的所有可能取值为123

计算

随机变量的分布列为:

1

2

3

数学期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了201950位农民的年收入并制成如下频率分布直方图:

1)根据频率分布直方图,估计50位农民的年平均收入元(单位:千元)(同一组数据用该组数据区间的中点值表示);

2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入近似为样本方差,经计算得,利用该正态分布,求:

i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

ii)为了调研精准扶贫,不落一人的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

附参考数据:,若随机变量X服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在椭圆上,为右焦点,轴,为椭圆上的四个动点,且交于原点.

1)判断直线与椭圆的位置关系;

2满足,判断的值是否为定值,若是,请求出此定值,并求出四边形面积的最大值,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“二万五千里长征”是1934年10月到1936年10月中国工农红军进行的一次战略转移,是人类历史上的伟大奇迹,向世界展示了中国工农红军的坚强意志,在期间发生了许多可歌可泣的英雄故事.在中国共产党建党周年之际,某中学组织了“长征英雄事迹我来讲”活动,已知该中学共有高中生名,用分层抽样的方法从该校高中学生中抽取一个容量为的样本参加活动,其中高三年级抽了人,高二年级抽了人,则该校高一年级学生人数为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】变换T1是逆时针旋转角的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2

1)点P(21)经过变换T1得到点P',求P'的坐标;

2)求曲线yx2先经过变换T1,再经过变换T2所得曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若曲线上一点的极坐标为,且过点,求的普通方程和的直角坐标方程;

(2)设点的交点为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,椭圆的极坐标方程为.

1)求直线的普通方程(写成一般式)和椭圆的直角坐标方程(写成标准方程);

2)若直线与椭圆相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为

1)求曲线C的普通方程;

2)直线l的参数方程为,(t为参数),直线lx轴交于点F,与曲线C的交点为AB,当取最小值时,求直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:(常数),.数列满足:.

1)求的值;

2)求出数列的通项公式;

3)问:数列的每一项能否均为整数?若能,求出k的所有可能值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案