精英家教网 > 高中数学 > 题目详情

已知数学公式对任意x∈R恒成立,且a1=9,a2=36,则b=


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
A
分析:根据 bxn+1=b[1+(x-1)]n+1,根据它的展开式形式,由题意可得 b =9,b=36,由此求出b的值.
解答:∵bxn+1=b[1+(x-1)]n+1=,且a1=9,a2=36,
∴b=9,b=36,解得 b=1,n=9,
故选A.
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是二次函数,f′(x)是它的导函数,且对任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表达式;
(2)设t>0,曲线C:y=f(x)在点P(t,f(t))处的切线为l,l与坐标轴围成的三角形面积为S(t).求S(t)的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年天津一中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知f(x)是二次函数,f′(x)是它的导函数,且对任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表达式;
(2)设t>0,曲线C:y=f(x)在点P(t,f(t))处的切线为l,l与坐标轴围成的三角形面积为S(t).求S(t)的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省信阳高中高三第一次大考数学试卷(理科)(解析版) 题型:解答题

已知f(x)是二次函数,f′(x)是它的导函数,且对任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表达式;
(2)设t>0,曲线C:y=f(x)在点P(t,f(t))处的切线为l,l与坐标轴围成的三角形面积为S(t).求S(t)的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年广东省深圳市高考数学一模试卷(理科)(解析版) 题型:解答题

已知f(x)是二次函数,f′(x)是它的导函数,且对任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表达式;
(2)设t>0,曲线C:y=f(x)在点P(t,f(t))处的切线为l,l与坐标轴围成的三角形面积为S(t).求S(t)的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年广东省各地市高考数学模拟试卷分类汇编02:函数与导数(解析版) 题型:解答题

已知f(x)是二次函数,f′(x)是它的导函数,且对任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表达式;
(2)设t>0,曲线C:y=f(x)在点P(t,f(t))处的切线为l,l与坐标轴围成的三角形面积为S(t).求S(t)的最小值.

查看答案和解析>>

同步练习册答案