设M=2t+it-1×2t-1+…+i1×2+i0,其中ik=0或1(k=0,1,2,…,t-1,t∈N+),并记M=(1it-1it-2…i1i0)2.对于给定的
x1=(1it-1it-2…i1i0)2,构造无穷数列{xn}如下:x2=(1i0it-1it-2…i2i1)2,x3=(1i1i0it-1…i3i2),x4=(1i2i1i0it-1…i3)2…,
(1)若x1=109,则x3=________ (用数字作答);
(2)给定一个正整数m,若x1=22m+2+22m+1+22m+1,则满足xn=x1(n∈N+且n≠1)的n的最小值为________.
解:(1)∵x1=109=26+25+23+22+1
∴x1=(1101101)2而x3=(1i1i0it-1…i3i2)2=(1011011)2,
∴x3=26+24+23+21+1=91
(2)∵x1=22m+2+22m+1+22m+1
∴x1=(1i2m+1i2m…i1i0)2而x2=(1i0i2m+1i2m…i1)2,x3=(1i1i0i2m+1i2m…i2)2,
当i0跑到最后时移动了2m+2次,此时x2m+3=x1,
满足xn=x1(n∈N+且n≠1)的n的最小值为2m+3
故答案为:91、2m+3
分析:(1)先将x1=109分成26+25+23+22+1从而得到1it-1it-2…i1i0的值,然后根据x3=(1i1i0it-1…i3i2)2进行求解即可;
(2)根据x1=22m+2+22m+1+22m+1则x1=(1i2m+1i2m…i1i0)2,从而x2=(1i0i2m+1i2m…i1)2,x3=(1i1i0i2m+1i2m…i2)2,依此类推x2m+3=x1=(1i2m+1i2m…i1i0)2,从而得到结论.
点评:本题主要考查了数列的应用,解题的关键是弄清题意,根据新的定义求解,属于中档题.