精英家教网 > 高中数学 > 题目详情
(本题满分12分)
甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,
答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.用表示甲队的总得分.
(1)求的概率及的数学期望
(2)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求.
(1)E=2;(2)P(AB) =
本题考查相互独立重复事件的概率计算,离散变量的分步列、期望的计算,解题时要明确事件之间的关系并准确计算.
(Ⅰ)因为假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响,结合独立事件概率的乘法公式得到结论。
(Ⅱ)由题意,ξ可取的值为0、1、2、3,由n次独立重复实验中恰有k次发生的概率公式计算P(ξ=0)、P(ξ=1)、P(ξ=3)、P(ξ=4),进而可得ξ的分步列,进而由期望公式,计算可得答案.
解 (1)方法一 由题意知,的可能取值为0,1,2,3,且
P(=0)=,P(=1)=,
P(=2)=,P(=3)=.
所以的分布列为

0
1
2
3
P




的数学期望为E=0×+1×+2×+3×=2.
方法二 根据题设可知, ~B,
故P(=1)=
因为~B,所以E=3×=2.--------------------6分
(2)方法一 用C表示“甲队得2分乙队得1分”这一事件,用D表示“甲队得3分乙队得0分”这一事件,所以AB=C∪D,且C、D互斥,
P(C)=    P(D)=
由互斥事件的概率公式得P(AB)=P(C)+P(D)=.
方法二 用Ak表示“甲队得k分”这一事件,用Bk表示“乙队得k分”这一事件,k=0,1,2,3.由于事件A3B0,A2B1为互斥事件,故有P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).由题设可知,事件A3与B0独立,事件A2与B1独立,因此
P(AB)=P(A3B0)+P(A2B1)=P(A3)P(B0)+P(A2)P(B1
=---------------------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

一个盒子里装有4张卡片,分别标有数2,3,4,5;另一个盒子里则装有分别标有3,4,5,6四个数的4张卡片. 从两个盒子里各任取一张卡片.则取出的两张卡片上的数不同的概率为 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
甲乙二人用4张扑克牌(分别是红2, 红3, 红4, 方4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(Ⅰ)设分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况.
(Ⅱ)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(Ⅲ)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知某类型的高射炮在它们控制的区域内击中具有某种速度敌机的概率为
(Ⅰ)假定有5门这种高射炮控制某个区域,求敌机进入这个区域后被击中的概率;
(Ⅱ)要使敌机一旦进入这个区域内有90%以上的概率被击中,至少需要布置几门这类高射炮?(参考数据

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一枚硬币连续抛掷两次,出现一次正面一次反面的概率为      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.盒子里有25个外形相同的球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一球,已知它不是白球,则它是黑球的概率为                      
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在5道题中有3道数学题和2道物理题,如果不放回地依次抽取2道题,则在第一次抽到数学题条件下,第二次抽到数学题的概率是     (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则函数在区间[1,2]上有零点的概率是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在100张奖券中,有4 张中奖,从中任取两张,则两张都中奖的概率是( )
A.B.C.D.

查看答案和解析>>

同步练习册答案