精英家教网 > 高中数学 > 题目详情
11.已知单位向量$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{2}}$的夹角为α,且cosα=-$\frac{1}{5}$,若$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 由题意可得|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{2}}$|=1,$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=1•1•cosα=-$\frac{1}{5}$,由此求得 $\overrightarrow{a}•\overrightarrow{b}$的值.

解答 解:由题意可得|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{2}}$|=1,$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=1•1•cosα=-$\frac{1}{5}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=(2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)•($\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$)=2${\overrightarrow{{e}_{1}}}^{2}$+5$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$-3${\overrightarrow{{e}_{2}}}^{2}$=2-1-3=-2,
故选:A.

点评 本题主要考查两个向量的数量积的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列函数中,最小值是2的是(  )
A.y=$x+\frac{1}{x}$B.y=$\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$
C.y=$\sqrt{{x^2}+4}+\frac{1}{{\sqrt{{x^2}+4}}}$D.y=log3x+logx3$\begin{array}{l}{\;}{(x>0,x≠1)}\end{array}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,那么输出的n的值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若(2x-$\frac{a}{x}$)6的展开式中常数项为160,则a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sinωxcosωx-2$\sqrt{3}$cos2ωx+$\sqrt{3}$(ω>0),且y=f(x)的图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)已知△ABC的内角A,B,C的对边分别为a,b,c,角C为锐角,且f(C)=$\sqrt{3}$,c=3$\sqrt{2}$,sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在一个不透明的盒子中,放有标号分别为1,2,3,4的四个大小相同的小球,现从这个盒子中,有放回地先后取得两个小球,其标号分别为x,y
(1)求事件x+y=5的概率;
(2)求事件2x+|x-y|=6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a<b<0,则下列不等式一定成立的是(  )
A.a2c>b2c(c∈R)B.$\frac{b}{a}$>1C.lg(b-a)>0D.($\frac{1}{2}$)a>($\frac{1}{2}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下面是一个2×2列联表
 y1y2总计
x1a2271
x242529
总计b47100
则a-b的值为(  )
A.-4B.4C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.海曲市某中学的一个社会实践调查小组,在对中学生的良好“光盘习惯”的调查中,随机发放了120份问卷,对回收的100份有效问卷进行统计,得到如下2×2列联表:
做不到光盘能做到光盘合计
451055
301545
合计7525100
(Ⅰ)现已按是否能做到光盘分层从45份女生问卷中抽取了9份问卷,若从这9份问卷中随机抽取4份,并记录其中能做到光盘的问卷的份数为ξ,试求随机变量ξ的分布列和数学期望;
(Ⅱ)如果认为良好“光盘行动”与性别有关犯错误的概率不超过P,那么根据临界值表最精确的P的值应为多少?请说明理由.
附:独立性检验统计量Χ$\begin{array}{l}2\\{\;}\end{array}=\frac{{n(n\begin{array}{l}{\;}\\{11}\end{array}n\begin{array}{l}{\;}\\{22}\end{array}-n\begin{array}{l}{\;}\\{12}\end{array}n\begin{array}{l}{\;}\\{21}\end{array})\begin{array}{l}2\\{\;}\end{array}}}{{n\begin{array}{l}{\;}\\{1+}\end{array}n\begin{array}{l}{\;}\\{2+}\end{array}n\begin{array}{l}{\;}\\{+1}\end{array}n\begin{array}{l}{\;}\\{+2}\end{array}}},其中n=n\begin{array}{l}{\;}\\{11}\end{array}+n\begin{array}{l}{\;}\\{12}\end{array}+n\begin{array}{l}{\;}\\{21}\end{array}+n\begin{array}{l}{\;}\\{22}\end{array}$.
独立性检验临界值表:
P(X2≥k0)  
0.25
 
0.15
 
0.10
 
0.05
 
0.025
k0 
1.323
 
2.072
 
2.706
 
3841
 
5.024

查看答案和解析>>

同步练习册答案