【题目】已知函数
讨论函数的单调性;
设,对任意的恒成立,求整数的最大值;
求证:当时,
【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2);(3)证明见解析.
【解析】
(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(2)若a≤0,则f(1)=﹣a+1>0,不满足f(x)≤0恒成立.若a>0,由(Ⅰ)可知,函数f(x)在(0,)上单调递增;在()上单调递减.由此求出函数的最大值,由最大值小于等于0可得实数a的取值范围.
(3)由(2)可知,当a=1时,f(x)≤0恒成立,即lnx﹣x+1≤0.得到﹣xlnx≥﹣x2+x,则ex﹣xlnx+x﹣1≥ex﹣x2+2x﹣1.然后利用导数证明ex﹣x2+2x﹣1>0(x>0),即可说明ex﹣xlnx+x>0.
(1)∵函数 f(x)=(a∈R ).
∴,x>0,
当a=0时,f′(x)0,f(x)在(0,+∞)单调递增.
当a>0时,f′(x)>0,f(x)在(0,+∞)单调递增.
当a<0时,令f′(x)>0,解得:0<x,
令f′(x)<0,解得:x,
故f(x)在(0,)递增,在(,+∞)递减.
(2)当时,则f(1)=2a+3>0,不满足f(x)≤0恒成立.
若a<0,由(1)可知,函数f(x)在(0,)递增,在(,+∞)递减.
∴,又f(x)≤0恒成立,
∴f(x)max≤0,即0,令g(a)=,则g(a)单调递增,g(-1)=1,
g(-2)=<0,∴a时,g(a) <0恒成立,此时f(x)≤0恒成立,
∴整数的最大值-2.
(3)由(2)可知,当a=-2时,f(x)≤0恒成立,即lnx﹣2x2+1≤0.即xlnx﹣2x3+x≤0,恒成立,①
又ex﹣x2+2x﹣1+()
∴只需证ex﹣x2+2x﹣1,
记g(x)=ex﹣x2+2x﹣1(x>0),则g′(x)=ex﹣2x+2,
记h(x)=ex﹣2x+2,则h′(x)=ex﹣2,由h′(x)=0,得x=ln2.
当x∈(0,ln2)时,h′(x)<0;当x∈(ln2,+∞)时,h′(x)>0.
∴函数h(x)在(0,ln2)上单调递减;在(ln2,+∞)上单调递增.
∴4﹣2ln2>0.
∴h(x)>0,即g′(x)>0,故函数g(x)在(0,+∞)上单调递增.
∴g(x)>g(0)=e0﹣1=0,即ex﹣x2+2x﹣1>0.
结合①∴ex﹣x2+2x﹣1+()>0,即>0成立.
科目:高中数学 来源: 题型:
【题目】某校为全面推进新课程改革,在高一年级开设了研究性学习课程,某班学生在一次研究活动课程中,一个小组进行一种验证性实验,已知该种实验每次实验成功的概率为.
求该小组做了5次这种实验至少有2次成功的概率.
如果在若干次实验中累计有两次成功就停止实验,否则将继续下次实验,但实验的总次数不超过5次,求该小组所做实验的次数的概率分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若圆经过坐标原点和点,且与直线相切, 从圆外一点向该圆引切线,为切点,
(Ⅰ)求圆的方程;
(Ⅱ)已知点,且, 试判断点是否总在某一定直线上,若是,求出的方程;若不是,请说明理由;
(Ⅲ)若(Ⅱ)中直线与轴的交点为,点是直线上两动点,且以为直径的圆过点,圆是否过定点?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明:是直角三角形;
(ii)求面积的最大值.
(二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】边长为的等边三角形内任一点到三边距离之和为定值,这个定值等于;将这个结论推广到空间是:棱长为的正四面体内任一点到各面距离之和等于________________.(具体数值)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为菱形,ACEF为平行四边形,且平面ACEF⊥平面ABCD,设BD与AC相交于点G,H为FG的中点.
(1)证明:BD⊥CH;
(2)若AB=BD=2,AE=,CH=,求三棱锥F-BDC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有关于的一元二次方程.
(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.
(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com