10£®Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÄÚ´æÔÚʵÊýx£¬Âú×ãf£¨-x£©=-f£¨x£©£¬Ôò³Æf£¨x£©Îª¡°¾Ö²¿Æ溯Êý¡±£®
£¨1£©µ±¶¨ÒåÓòΪ[-1£¬1]£¬ÊÔÅжÏf£¨x£©=x4+x3+x2+x-1ÊÇ·ñΪ¡°¾Ö²¿Æ溯Êý¡±£»
£¨2£©Èôg£¨x£©=4x-m•2x+1+m2-3Ϊ¶¨ÒåÓòRÉϵġ°¾Ö²¿Æ溯Êý¡±£¬ÇóʵÊýmµÄ·¶Î§£»
£¨3£©ÒÑÖªa£¾1£¬¶ÔÓÚÈÎÒâµÄ$b¡Ê[1£¬\frac{3}{2}]$£¬º¯Êýh£¨x£©=ln£¨x+1+a£©+x2+x-b¶¼ÊǶ¨ÒåÓòΪ[-1£¬1]Éϵġ°¾Ö²¿Æ溯Êý¡±£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©Èôf£¨x£©Îª¡°¾Ö²¿Æ溯Êý¡±£¬Ôò¸ù¾Ý¶¨ÒåÑéÖ¤Ìõ¼þÊÇ·ñ³ÉÁ¢¼´¿É£»
£¨2£©¸ù¾Ýf£¨x£©Îª¶¨ÒåÓòRÉϵġ°¾Ö²¿Æ溯Êý£¬µÃµ½f£¨-x£©=-f£¨x£©£¬ºã³ÉÁ¢£¬½¨Á¢Ìõ¼þ¹Øϵ¼´¿ÉÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©¸ù¾Ýf£¨x£©Îª¶¨ÒåÓò[-1£¬1]Éϵġ°¾Ö²¿Æ溯Êý£¬µÃµ½f£¨-x£©=-f£¨x£©£¬ºã³ÉÁ¢£¬½¨Á¢Ìõ¼þ¹Øϵ¼´¿ÉÇóʵÊýaµÄÈ¡Öµ·¶Î§£»

½â´ð ½â£º£¨1£©ÒòΪf£¨x£©=x4+x3+x2+x-1£¬
ËùÒÔf£¨-x£©=x4-x3+x2-x-1£¬
ÓÉf£¨-x£©=-f£¨x£©µÃx4+x2-1=0£¬
Áîx2=t¡Ê[0£¬1]£¬¶øt2+t-1=0´æÔÚÒ»¸ù$\frac{{\sqrt{5}-1}}{2}¡Ê[0£¬1]$£¬
¼´´æÔÚx¡Ê[-1£¬1]£¬Ê¹µÃf£¨-x£©=-f£¨x£©£¬
ËùÒÔf£¨x£©Îª¡°¾Ö²¿Æ溯Êý¡±£®
£¨2£©ÓÉÌâÒâÖª£¬g£¨-x£©=-g£¨x£©ÔÚRÉÏÓн⣬¼´4-x-2m•2-x+m2-3=-4x+2m•2x-m2+3ÔÚRÉÏÓн⣬
ËùÒÔ4x+4-x-2m£¨2x+2-x£©+2£¨m2-3£©=0ÔÚRÉÏÓн⣬
Áî2x+2-x=u¡Ê[2£¬+¡Þ£©£¬
ËùÒÔu2-2mu+2m2-8=0ÔÚu¡Ê[2£¬+¡Þ£©ÉÏÓн⣬
ÁîF£¨u£©=u2-2mu+2m2-8£¬
¢Ùµ±F£¨2£©¡Ü0ʱ£¬¼´2m2-4m-4¡Ü0£¬½âµÃ$1-\sqrt{3}¡Üm¡Ü1+\sqrt{3}$£¬
´ËʱF£¨u£©ÔÚ[2£¬+¡Þ£©ÉϱØÓÐÁãµã£¬ËùÒÔ$1-\sqrt{3}¡Üm¡Ü1+\sqrt{3}$£»
¢Úµ±F£¨2£©£¾0ʱ£¬F£¨u£©ÔÚ[2£¬+¡Þ£©ÉÏÓÐÁãµã±ØÐëÂú×ã
$\left\{{\begin{array}{l}{¡÷¡Ý0}\\{F£¨2£©£¾0}\\{¶Ô³ÆÖáx=m£¾2}\end{array}}\right.⇒\left\{{\begin{array}{l}{4{m^2}-4£¨2{m^2}-8£©¡Ý0}\\{2{m^2}-4m-4£¾0}\\{m£¾2}\end{array}}\right.⇒1+\sqrt{3}¡Üm¡Ü2\sqrt{2}$
×ÛÉÏ£º$1-\sqrt{3}¡Üm¡Ü2\sqrt{2}$£®
£¨3£©ÓÉÌâÒâÖª£¬$?b¡Ê[1£¬\frac{3}{2}]$£¬-h£¨x£©=h£¨-x£©ÔÚx¡Ê[-1£¬1]É϶¼Óн⣬
¼´$?b¡Ê[1£¬\frac{3}{2}]$£¬ln£¨-x+1+a£©+x2-x-b=-ln£¨x+1+a£©-x2-x+bÔÚx¡Ê[-1£¬1]É϶¼Óн⣬
¼´$?b¡Ê[1£¬\frac{3}{2}]$£¬ln[£¨a+1£©2-x2]+2x2=2bÔÚx¡Ê[-1£¬1]É϶¼Óн⣬
Áîx2=s¡Ê[0£¬1]£¬Áî¦Õ£¨s£©=ln[£¨a+1£©2-s]+2s£¬
ÓÉÌâÒâÖª¦Õ£¨s£©ÔÚs¡Ê[0£¬1]ÉϵÄÖµÓò°üº¬[2£¬3]£¬
ÒòΪ${¦Õ^'}£¨s£©=\frac{-1}{{{{£¨a+1£©}^2}-s}}+2$£¬ÓÖÒòΪs¡Ê[0£¬1]£¬a¡Ê£¨1£¬+¡Þ£©£¬ËùÒÔ£¨a+1£©2-s£¾3£¬
ËùÒԦա䣨s£©£¾0£¬ËùÒÔ¦Õ£¨s£©ÔÚs¡Ê[0£¬1]Éϵ¥µ÷µÝÔö£¬
ËùÒÔ$\left\{{\begin{array}{l}{¦Õ£¨0£©¡Ü2}\\{¦Õ£¨1£©¡Ý3}\\{a£¾1}\end{array}}\right.⇒\left\{{\begin{array}{l}{a¡Üe-1}\\{a¡Ý\sqrt{e+1}-1}\\{a£¾1}\end{array}}\right.⇒1£¼a¡Üe-1$
×ÛÉÏ£º1£¼a¡Üe-1£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÓ뺯ÊýÆæżÐÔÓйصÄж¨Ò壬¸ù¾ÝÌõ¼þ½¨Á¢·½³Ì¹ØϵÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬ËıßÐÎABCDÊÇÁâÐΣ¬ADNMÊǾØÐΣ¬Æ½ÃæADNM¡ÍƽÃæABCD£¬¡ÏDAB=$\frac{¦Ð}{3}$£¬AD=4£¬AM=2£¬EÊÇABµÄÖеã
£¨1£©ÇóÖ¤£ºÆ½ÃæMDE¡ÍƽÃæNDC
£¨2£©ÇóÈýÀâ׶N-MDCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®º¯Êýf£¨x£©=ax3+6x2+£¨a-1£©x-5Óм«ÖµµÄ³äÒªÌõ¼þÊÇ£¨¡¡¡¡£©
A£®a=-3»òa=4B£®-3£¼a£¼4C£®a£¾4»òa£¼-3D£®a¡ÊR

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒf£¨-x-1£©=f£¨x-1£©£¬µ±x¡Ê[-1£¬0]ʱ£¬f£¨x£©=-x3£¬Ôò¹ØÓÚxµÄ·½³Ìf£¨x£©=|cos¦Ðx|ÔÚ[-$\frac{5}{2}$£¬$\frac{1}{2}$]ÉϵÄËùÓÐʵÊý½âÖ®ºÍΪ£¨¡¡¡¡£©
A£®-7B£®-6C£®-3D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬D£¬E·Ö±ðΪAB£¬BCµÄÖе㣬µãFÔÚ²àÀâB1BÉÏ£¬ÇÒB1D¡ÍA1F£¬A1C1¡ÍA1B1£®ÇóÖ¤£º
£¨1£©Ö±ÏßDE¡ÎƽÃæA1C1F£»
£¨2£©Æ½ÃæB1DE¡ÍƽÃæA1C1F£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®$\int_{-4}^4{\sqrt{16-{x^2}}}dx+\int_{-\frac{¦Ð}{2}}^{\frac{¦Ð}{2}}{x^3}dx-\int_1^2{£¨{\frac{1}{x}-x}£©dx=}$8¦Ð+ln2-$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÄÐӤΪ24ÈË£¬Å®Ó¤Îª8ÈË£»³öÉúʱ¼äÔÚ°×ÌìµÄÄÐӤΪ31ÈË£¬Å®Ó¤Îª26ÈË£®
£¨1£©½«ÏÂÃæµÄ2¡Á2ÁÐÁª±í²¹³äÍêÕû£»
³öÉúʱ¼ä
ÐÔ±ð
ÍíÉÏ°×ÌìºÏ¼Æ
ÄÐÓ¤
ŮӤ
ºÏ¼Æ
£¨2£©ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.1µÄÇ°ÌáÏÂÈÏΪӤ¶ùÐÔ±ðÓë³öÉúʱ¼äÓйØϵ£¿
²Î¿¼¹«Ê½£º£¨1£©K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¨ÆäÖÐn=a+b+c+d£©£»
£¨2£©¶ÀÁ¢ÐÔ¼ìÑéµÄÁÙ½çÖµ±í£º
P£¨K2¡Ýk0£©0.100.050.010
k02.7063.8416.635

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªº¯Êýf £¨x£©¼°Æäµ¼Êýf¡ä£¨x£©£¬Èô´æÔÚx0£¬Ê¹µÃf £¨x0£©=f¡ä£¨x0£©£¬Ôò³Æx0ÊÇf £¨x£©µÄÒ»¸ö¡°ÇÉÖµµã¡±£¬ÏÂÁк¯ÊýÖУ¬´æÔÚ¡°ÇÉÖµµã¡±µÄÊǢ٢ڢۢݣ®£¨ÌîÉÏËùÓÐÕýÈ·µÄÐòºÅ£©
¢Ùf £¨x£©=x2£¬
¢Úf£¨x£©=sinx£¬
¢Ûf £¨x£©=lnx£¬
¢Üf £¨x£©=tanx£¬
¢Ýf£¨x£©=x+$\frac{1}{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÊýÁÐ{£¨-1£©n£¨2n-1£©}µÄÇ°2 016ÏîºÍS2016µÈÓÚ£¨¡¡¡¡£©
A£®-2 016B£®2 016C£®-2 015D£®2 015

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸