精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题:

1)若函数上是减函数,则

2)直线与线段相交,其中,则的取值范围是

3)点关于直线的对称点为,则的坐标为

4)直线与抛物线交于两点,则以为直径的圆恰好与直线相切.

其中正确的命题有__________.(把所有正确的命题的序号都填上)

【答案】3)(4

【解析】

对四个命题逐一分析,由此确定命题正确的选项.

对于(1),依题意在区间上恒成立,所以,所以,故(1)错误.

对于(2),直线,而点在直线的两侧,所以的取值范围是,即,故(2)错误.

对于(3)直线的斜率为的中点为,点满足直线.所以(3)正确.

对于(4),抛物线的焦点为,准线为,直线过焦点.直线与抛物线相交与两点,根据抛物线的定义可知,AB中点到抛物线准线距离等于AB一半,所以为直径的圆恰好与抛物线的准线相切,故(4)正确.

故答案为:(3)(4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合,全集

1)当时,求

2)若成立的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)求在区间上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情况如上:

所以,的单调递减区间是,单调递增区间是.

(Ⅱ)当,即时,函数上单调递增,

所以在区间上的最小值为.

,即时,

由(Ⅰ)知上单调递减,在上单调递增,

所以在区间上的最小值为.

,即时,函数上单调递减,

所以在区间上的最小值为.

综上,当时,的最小值为

时,的最小值为

时,的最小值为.

型】解答
束】
19

【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

1)求的方程;

2)若点上,过的两弦,若,求证: 直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:

每周累积户外暴露时间(单位:小时)

不少于28小时

近视人数

21

39

37

2

1

不近视人数

3

37

52

5

3

(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;

(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?

近视

不近视

足够的户外暴露时间

不足够的户外暴露时间

附:

P

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1的圆心在坐标原点O,且恰好与直线相切.

()求圆C1的标准方程;

()设点A为圆上一动点,AN垂直于x轴于点N,若动点Q满足

(其中m为非零常数),试求动点Q的轨迹方程;

()()的结论下,当m时,得到动点Q的轨迹为曲线C,与l1垂直的直线l与曲线C交于BD两点,求OBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离比它到轴的距离大.

1)求动点的轨迹的方程;

2)设点(为常数),过点作斜率分别为的两条直线交曲线两点,交曲线两点,点分别是线段的中点,若,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题对任意实数,不等式恒成立;命题方程表示焦点在轴上的双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题:为真命题,且为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形中,上一点,且的中点.沿将梯形折成大小为的二面角,若内(含边界)存在一点,使得平面,则的取值范围是__________

查看答案和解析>>

同步练习册答案