精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的单调区间;
(2)在区间内存在,使不等式成立,求的取值范围.

(1)的单调递增区间是的单调递减区间是.
(2)的取值范围是.

解析试题分析:(1)首先确定函数的定义域.求导数:
,根据当时,为单调递增函数;
时,为单调递减函数,得到函数的单调区间.
(2)构造函数,即,将问题转化成:在区间内,,利用导数求函数的极值、最小值,得到的取值范围是.
试题解析:(1)函数的定义域为
    2分
,即时,为单调递增函数;
,即时,为单调递减函数;
所以,的单调递增区间是的单调递减区间是    6分
(2)由不等式,得,令
    8分
由题意可转化为:在区间内,
,令,得

 





 


 
 
 
0
 
+
 
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数).
(1)试讨论函数的单调性;
(2)设函数,当函数有零点时,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2+ln(x+1).
(1)当a=时,求函数f(x)的单调区间;
(2)当时,函数y=f(x)图像上的点都在所表示的平面区域内,求实数a的取值范围;
(3)求证:(其中,e是自然数对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若函数在区间的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求证:函数在区间上存在唯一的极值点;
(2)当时,若关于的不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,对一切正整数,点都在函数的图像上,且过点的切线的斜率为.
(1)求数列的通项公式;
(2)设,等差数列的任一项,其中中所有元素的最小数,,求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若是函数的极值点,求实数的值;
(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数),其中
(1)若曲线在点处相交且有相同的切线,求的值;
(2)设,若对于任意的,函数在区间上的值恒为负数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数是函数的导函数.
(1)若,求的单调减区间;
(2)若对任意,都有,求实数的取值范围;
(3)在第(2)问求出的实数的范围内,若存在一个与有关的负数,使得对任意恒成立,求的最小值及相应的值.

查看答案和解析>>

同步练习册答案