精英家教网 > 高中数学 > 题目详情
观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,…由以上等式推测到一个一般的结论:对于n∈N*,12-22+32-42+…+(-1)n+1n2=
 
分析:由已知中的等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,我们易得到等式左边是从一开始的奇数平方和减偶数平方和,右边式子的绝对值是一等差数列的前n项和,由此不难归纳出答案.
解答:解:由已知中等式:
12=1=(-1)2×
1×(1+1)
2

12-22=-3=(-1)3×
2×(2+1)
2

12-22+32=6=(-1)4×
3×(3+1)
2

12-22+32-42=-10=(-1)5×
4×(4+1)
2


由此我们可以推论出一个一般的结论:对于n∈N*
12-22+32-42+…+(-1)n+1n2=(-1)n+1×
n×(n+1)
2

故答案为:(-1)n+1×
n×(n+1)
2
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49

照此规律,第n个等式为
n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

13、观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此规律,第五个等式应为
5+6+7+8+9+10+11+12+13=81

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式:
12=1,
12-22=-3,
12-22+32=6,
12-22+33-42=-10,

由以上等式推测到一个一般的结论:对于n∈N*
12-22+33-42+…+(-1))n+1n2=
(-1)n
n(n+1)
2
(-1)n
n(n+1)
2

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式:
1
2×3
=(
1
2
-
1
3
)×
1
1
1
2×4
=(
1
2
-
1
4
)×
1
2
1
2×5
=(
1
2
-
1
5
)×
1
3
1
2×6
=(
1
2
-
1
6
)×
1
4
,…可推测当n≥3,n∈N*时,
1
2×n
=
1
2
-
1
n
)×
1
n-2
1
2
-
1
n
)×
1
n-2

查看答案和解析>>

同步练习册答案