精英家教网 > 高中数学 > 题目详情

【题目】设不等式x2+y2≤4确定的平面区域为U,|x|+|y|≤1确定的平面区域为V.
(1)定义横、纵坐标为整数的点为“整点”,在区域U内任取3个整点,求这些整点中恰有2个整点在区域V的概率;
(2)在区域U内任取3个点,记这3个点在区域V的个数为X,求X的分布列和数学期望.

【答案】
(1)解:依题可知平面区域U的整点为(0,0),(0,±1),(0,±2),(±1,0),(±2,0),(±1,±1)共有13个,

平面区域V的整点为(0,0),(0,±1),(±1,0)共有5个,


(2)解:依题可得:平面区域U的面积为:π22=4π,平面区域V的面积为:

在区域U内任取1个点,则该点在区域V内的概率为

易知:X的可能取值为0,1,2,3,

∴X的分布列为:

X

0

1

2

3

P

∴X的数学期望:

(或者: ,故


【解析】(1)由题意知本题是一个古典概型,用列举法求出平面区域U的整点的个数N,平面区域V的整点个数为n,这些整点中恰有2个整点在区域V的概率 ;(2)依题可得:平面区域U的面积为:π22=4π,平面区域V的面积为: ,在区域U内任取1个点,则该点在区域V内的概率为 ,易知:X的可能取值为0,1,2,3,则X∽B(3, ),代入概率公式即可求得求X的分布列和数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点.

(1)求以线段为邻边的平行四边形的另一顶点的坐标;

(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P. (Ⅰ)求证:AD∥EC;
(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的单调减函数是奇函数,当时,.

(Ⅰ)求的值;

(Ⅱ)求的解析式;

(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体EF﹣ABCD中,CDEF为边长为2的正方形,ABCD为直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求证:AC⊥FB
(2)求二面角E﹣FB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若|f(x)|≥ax,则a的取值范围是(
A.(﹣∞,0]
B.(﹣∞,1]
C.[﹣2,1]
D.[﹣2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个. (Ⅰ)求三种粽子各取到1个的概率;
(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点

的值;

的平分线交线段AB于点D,求点D的坐标;

在单位圆上是否存在点C,使得?若存在,请求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若将其图象向右平移 个单位后得到的图象关于原点对称,则函数f(x)的图象(
A.关于直线x= 对称
B.关于直线x= 对称
C.关于点( ,0)对称
D.关于点( ,0)对称

查看答案和解析>>

同步练习册答案