精英家教网 > 高中数学 > 题目详情
(本小题满分14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,
∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求证:PC⊥
(2)求证:CE∥平面PAB;
(3)求三棱锥P-ACE的体积V.

(1)略
(2)略
(3)V=
解:(1)在Rt△ABC中,AB=1,∠BAC=60°,
∴BC=,AC=2.取中点,连AF, EF,
∵PA=AC=2,∴PC⊥.      (1分)
∵PA⊥平面ABCD,平面ABCD,
∴PA⊥,又∠ACD=90°,即
,∴
.                       (3分)
.                 (4分)
∴PC⊥.            (5分)
(2)证法一:取AD中点M,连EM,CM.则
EM∥PA.∵EM 平面PAB,PA平面PAB,
∴EM∥平面PAB.              (7分)
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC 平面PAB,AB平面PAB,
∴MC∥平面PAB.                       (9分)
∵EM∩MC=M,∴平面EMC∥平面PAB.
∵EC平面EMC,∴EC∥平面PAB.     (10分)
证法二:延长DC、AB,设它们交于点N,连PN.
∵∠NAC=∠DAC=60°,AC⊥CD,∴C为ND的中点.         (7分)
∵E为PD中点,∴EC∥PN.                               (9分)
∵EC 平面PAB,PN平面PAB,∴EC∥平面PAB.             (10分)
(3)由(1)知AC=2,EF=CD, 且EF⊥平面PAC.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,得EF=. (12分)
则V=.                         (14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本小题12 分)如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD为正方形,E、F分别为AB、PC的中点.
①求证:EF⊥平面PCD;
②求平面PCB与平面PCD的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正四棱锥底面正方形的边长为4cm,高PO与斜高PE的夹角为,如图,求正四棱锥的表面积与体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知棱长为4的正方体中,为侧面的中心,为棱的中点,试计算
(1)
(2)求证
(3)求与面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)

如图4,正方体中,点E在棱CD上。
(1)求证:
(2)若E是CD中点,求与平面所成的角;
(3)设M在上,且,是否存在点E,使平面⊥平面,若存在,指出点E的位置,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知三棱柱的侧棱垂直于底面,分别是的中点.
(1)证明:
(2)证明:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


设地球是半径为R的球,地球上A、B两地都在北纬45°的纬线上,A在东经20°、B在东经110°的经线上,则A、B两地的球面距离是 (     )
A.      B.      C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥中,底面.底面为梯形,
.,点在棱上,且
(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)
如图,在六面体中,四边形ABCD是边长为2的正方形,四边形是边长为1的正方形,平面,平面ABCD,DD1=2。

(1)求证:与AC共面,与BD共面.   
(2)求证:平面
(3)求二面角的大小.

查看答案和解析>>

同步练习册答案