精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=ln(x2﹣x)的定义域为( )
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)

【答案】C
【解析】解:要使函数有意义,则x2﹣x>0,即x>1或x<0,

故函数的定义域为(﹣∞,0)∪(1,+∞),

所以答案是:C

【考点精析】解答此题的关键在于理解函数的定义域及其求法的相关知识,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】命题p:x∈(﹣∞,0),2x>3x;命题q:x∈(0,+∞), >x3; 则下列命题中真命题是(
A.p∧q
B.(¬p)∧q
C.(¬p)∨(¬q)
D.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=asinx﹣bcosx(a,b为常数,a≠0,x∈R)在x= 处取得最小值,则函数g(x)=f( ﹣x)是( )
A.偶函数且它的图象关于点 (π,0)对称
B.奇函数且它的图象关于点 (π,0)对称
C.奇函数且它的图象关于点( . ,0)对称
D.偶函数且它的图象关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1260 m,经测量,cos A=,cos C=

(1)求索道AB的长;

(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若分别为P(1,0)、Q(2,0),R(4,0)、S(8,0)四个点各作一条直线,所得四条直线恰围成正方形,则该正方形的面积不可能为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:

中学

人数

30

40

20

10

为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.
(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?
(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;
(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+ )= .圆O的参数方程为 (θ为参数,r>0).
(Ⅰ)求圆O的圆心的极坐标(ρ≥0,0≤θ<2π );
(Ⅱ)当r为何值时,圆O上的点到直线l的最大距离为2+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC= ,D、E分别是SA、SC的中点.

(I)求证:平面ACD⊥平面BCD;
(II)求二面角S﹣BD﹣E的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(1)若 ,求x的值;
(2)记f(x)= ,求f(x)的最大值和最小值以及对应的x的值.

查看答案和解析>>

同步练习册答案