精英家教网 > 高中数学 > 题目详情
双曲线与椭圆
x2
27
+
y2
36
=1
有相同焦点,且经过点(
15
,4)
,则双曲线的方程为(  )
A.
x2
4
-
y2
5
=1
B.
y2
5
-
x2
4
=1
C.
y2
4
-
x2
5
=1
D.
x2
5
-
y2
4
=1
椭圆
x2
27
+
y2
36
=1
的焦点为(0,±3),即c=3,
设双曲线方程为
y2
a2
-
x2
9-a2
=1

过点(
15
,4
),则
16
a2
-
15
9-a2
=1

得a2=4或a2=36,而a2<9,
∴a2=4,双曲线方程为
y2
4
-
x2
5
=1

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

直线y=x-1被y2=x截得的弦长为(  )
A.3B.2
3
C.
10
D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的两焦点分别为F1(-2
2
,0)、F2(2
2
,0),长轴长为6,
(1)求椭圆C的标准方程;
(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线y=kx与双曲线
x2
a2
-
y2
b2
=1
的左右两支都有交点的充要条件是k∈(-1,1),且该双曲线与直线y=
1
2
x-
3
2
相交所得弦长为
4
15
3
,则该双曲线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线y2=2px(p>0)的焦点F与双曲
x2
4
-
y2
5
=1
的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=
2
|AF|
,则A点的横坐标为(  )
A.2
2
B.3C.2
3
D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在原点,焦点F与双曲线x2-
y2
4
=1
的右顶点重合.
(1)求抛物线的方程;
(2)若直线l经过焦点F,且倾斜角为60°,与抛物线交于A、B两点,求:弦长|AB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三角形△ABC的两顶点为B(-2,0),C(2,0),它的周长为10,求顶点A轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F1的坐标为(-1,0),已知椭圆E上的一点到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的右焦点F2作一条倾斜角为
π
4
的直线交椭圆于C、D,求△CDF1的面积;
(Ⅲ)设点P(4,t)(t≠0),A、B分别是椭圆的左、右顶点,若直线AP、BP分别与椭圆相交异于A、B的点M、N,求证∠MBP为锐角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A,B分别为椭圆
x2
a2
+
y2
b2
=1(a,b>0)
的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内.
(此题不要求在答题卡上画图)

查看答案和解析>>

同步练习册答案