精英家教网 > 高中数学 > 题目详情
9.已知椭圆的焦点为(-1,0)和(1,0).点P(2,0)在椭圆上,则椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

分析 设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意可得c=1,a=2,再由a,b,c的关系,可得b,进而得到椭圆方程.

解答 解:设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得c=1,a=2,
b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{4-1}$=$\sqrt{3}$,
即有椭圆方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
故答案为:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

点评 本题考查椭圆的方程的求法,注意运用待定系数法,考查椭圆的焦点的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若数列{xn}满足对任意的m∈N*(m≤n),都有{xn}的前m项和等于前m项积(前1项和及前1项积均等于首项x1),则称数列{xn}为“和谐数列”.
(1)已知数列{an}是首项a1=2的“和谐数列”,求a3的值;
(2)设数列{an}是项数不少于3的递增的正整数数列,证明{an}不是“和谐数列”;
(3)若数列{$\frac{1}{{a}_{n}}$}是“和谐数列”,且0<a1<1;
①试求an+1与an的递推关系;
②证明对任意的n∈N*,都有0<an<1成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的前n项和为Sn,满足a1+a2=10,S5=40.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=-x2+m在x∈[m,+∞)上为减函数,则m的取值范围是m≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设向量$\overrightarrow{OA}=(5+cosθ,4+sinθ)$,$\overrightarrow{OB}=(2,0)$,则$|\overrightarrow{AB}|$的取值范围是[4,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,能否在椭圆上找到一点M,使点M到左准线的距离是它到两个焦点距离的比例中项?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,正方体ABCD-A1B1C1D1,E,F分别在AB1,BC1上,且$\frac{{B}_{1}E}{AE}$=$\frac{{C}_{1}F}{BF}$=2,过EF做一个平面和面ABCD相交,并找到交线,写出作法.(注意:交线必须是由两个确定的点的连线)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=4x-2x+1+2,x∈R.
(1)当x∈[-1,2]时,求f(x)的值域.
(2)记(1)中的f(x)的值域为集合A,若关于x的方程x2-(a+1)x+a+1=0在x∈A上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.铺的很平的一张白纸是一个平面B.平面是矩形或平行四边形的形状
C.两个平面叠在一起比一个平面厚D.平面的直观图一般画成平行四边形

查看答案和解析>>

同步练习册答案