精英家教网 > 高中数学 > 题目详情
6.Rt△ABC中.|AB|=2a(a>0),求直角顶点C的轨迹方程.

分析 以AB为x轴,中垂线为y轴建立坐标系,设直角顶点C(x,y),则利用|OC|=$\frac{1}{2}$|AB|,可得直角顶点C的轨迹方程.

解答 解:以AB为x轴,中垂线为y轴建立坐标系,则A(-a,0),B(a,0),
设直角顶点C(x,y),则利用|OC|=$\frac{1}{2}$|AB|,
可得直角顶点C的轨迹方程x2+y2=a2(x≠±a).

点评 本题考查直角顶点C的轨迹方程,考查学生的计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列各函数中,图象完全相同的是(  )
A.y=2lgx和y=lgx2B.y=$\frac{|x-1|}{x-1}$和y=$\left\{\begin{array}{l}{-1,x∈(-∞,1)}\\{1,x∈(1,+∞)}\end{array}\right.$
C.y=$\frac{{x}^{2}}{x}$和y=xD.y=x-3和y=$\sqrt{(x-3)^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知α是锐角,且sinα=$\frac{\sqrt{6}-\sqrt{2}}{4}$,则cosα=$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等边圆柱(轴截面是正方形的圆柱)的全面积为S,求其内接正四棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将-$\frac{25}{6}$π化成a+2kπ(k∈Z,0≤a<2π)的形式为(  )
A.-$\frac{25}{6}$π=-5π+$\frac{5}{6}$πB.-$\frac{25}{6}$π=-6π+$\frac{11}{6}$πC.-$\frac{25}{6}$π=-4π-$\frac{π}{6}$D.-$\frac{25}{6}$π=-3π-$\frac{7}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=log2x+log22(2x2)的值域是(  )
A.(-∞,0]B.[4,+∞)C.[0,4]D.[-$\frac{9}{16}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若l∩α=A,b?α,则1与b的位置关系为相交或异面.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若一个空间几何体的三个视图都是直角边长为1的等腰直角三角形,则这个空间几何体的外接球的表面积和内切球的表面积之比是(  )
A.$\frac{18+9\sqrt{3}}{2}$B.18+9$\sqrt{3}$C.3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列各函数中,最小值为2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$D.$y=x+\frac{1}{4(x-2)}-1(x>2)$

查看答案和解析>>

同步练习册答案