【题目】已知函数f(x)满足f(x+y)=f(x)f(y),且f(1)= .
(1)当n∈N*时,求f(n)的表达式;
(2)设an=nf(n),n∈N* , 求证a1+a2+a3+…+an<2;
(3)设bn=(9﹣n) ,n∈N* , Sn为bn的前n项和,当Sn最大时,求n的值.
【答案】
(1)解:令x=n.y=1,得到f(n+1)=f(n)f(1)= f(n),
所以{f(n)}是首项为 、公比为 的等比数列,即f(n)=
(2)解:∵ , ,
,
两式相减得: ,
整理得
(3)解:∵f(n)= ,而bn=(9﹣n) ,n∈N*,则bn= ,
当n≤8时,bn>0;当n=9时,bn=0;当n>9时,bn<0;
∴n=8或9时,Sn取到最大值
【解析】(1)由于函数f(x)满足f(x+y)=f(x)f(y)对任意的实数x,y都成立,故可令x=n,y=1,再由f(1)= 得到f(n)的表达式;(2)由(1)知,an=nf(n)= ,故可用错位相减法求出a1+a2+a3+…+an的表达式,即可得证;(3)由(1)和bn=(9﹣n) ,n∈N*可求bn的表达式,进而求出Sn , 由于数列为一种特殊函数,故可利用函数单调性得到Sn最大时的n值.
【考点精析】本题主要考查了等比数列的通项公式(及其变式)和数列的前n项和的相关知识点,需要掌握通项公式:;数列{an}的前n项和sn与通项an的关系才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知直线l:x﹣my+3=0和圆C:x2+y2﹣6x+5=0
(1)当直线l与圆C相切时,求实数m的值;
(2)当直线l与圆C相交,且所得弦长为 时,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2sin(2x+φ)(0<φ<π),y=f(x)图象的一个对称中心是 .
(1)求φ;
(2)在给定的平面直角坐标系中作出该函数在x∈[0,π]的图象;
(3)求函数f(x)≥1(x∈R)的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为研究患肺癌与是否吸烟有关,做了一次相关调查,其中部分数据丢失,但可以确定的是不吸烟人数与吸烟人数相同,吸烟患肺癌人数占吸烟总人数的;不吸烟的人数中,患肺癌与不患肺癌的比为.
(1)若吸烟不患肺癌的有人,现从患肺癌的人中用分层抽样的方法抽取人,再从这人中随机抽取人进行调查,求这两人都是吸烟患肺癌的概率;
(2)若研究得到在犯错误概率不超过的前提下,认为患肺癌与吸烟有关,则吸烟的人数至少有多少?
附: ,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com