精英家教网 > 高中数学 > 题目详情

直线l经过点P(1,1),且与圆:x2+y2-4x+6y-4=0相切,则直线l的方程是________.

x-4y+3=0
分析:把圆的方程化为标准方程后,找出圆心坐标和圆的半径,设出直线l的方程为y-1=kx-k,然后利用点到直线的距离公式求出圆心到直线l的距离d,让d等于圆的半径列出关于k的方程,求出方程的解即可得到k的值,写出直线l的方程即可.
解答:把圆方程化为标准方程得:(x-2)2+(y+3)2=17,
所以圆心坐标为(2,-3),圆的半径r=
由直线l过(1,1),当直线l的斜率不存在时,不合题意,
则设直线l的方程为y=kx-k+1,
因为直线l与已知圆相切,所以圆心到直线的距离d=
解得:k=
则直线l的方程为:x-4y+3=0.
故答案为:x-4y+3=0.
点评:此题考查学生掌握直线与圆相切时所满足的条件,灵活运用点到直线的距离公式化简求值,注意题目的条件的应用,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ
(θ为参数),直线l经过点P(1,1),倾斜角α=
π
6

(1)写出直线l的参数方程;
(2)设l与圆圆C相交与两点A,B,求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过A(1,6),又经过A(1,6)与B(5,-2)的中点,且圆心在直线4x-2y=0上.
(1)求圆C的圆心和半径,并写出圆C的方程;
(2)若直线l经过点P(-1,3)且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过点P(1,1),倾斜角α=
π
6
,设直线l与圆x2+y2=4相交于A,B两点,则点P与A,B两点的距离之积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

A:如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于点D,BC=4cm,
(1)试判断OD与AC的关系;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
B:(选修4-4)已知直线l经过点P(1,1),倾斜角α=
4

(1)写出直线l的参数方程;
(2)设l与圆x2+y2=4相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网请考生在第(1),(2),(3)题中任选一题作答,如果多做,则按所做的第一题记分.
(1)选修4-1:几何证明选讲
如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F.
(Ⅰ)求
BF
FC
的值;
(Ⅱ)若△BEF的面积为S1,四边形CDEF的面积为S2,求S1:S2的值.
(2)选修4-4:坐标系与参数方程
以直角坐标系的原点O为极点,a=
π
6
轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角a=
π
6

( I)写出直线l的参数方程;
( II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积.
(3)选修4-5:不等式选讲
已知函数f(x)=|2x+1|+|2x-3|.
(I)求不等式f(x)≤6的解集;
(II)若关于x的不等式f(x)>a恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案