精英家教网 > 高中数学 > 题目详情
如图A,B是单位圆O上的点,点A是单位圆与x轴正半轴的交点.点B在第二象限,∠AOB=θ,sinθ=
4
5

(Ⅰ)求B点坐标;
(Ⅱ)求sin(π-θ)+2sin(
π
2
-θ)的值.
考点:运用诱导公式化简求值,单位圆与周期性
专题:三角函数的求值
分析:(1)根据角θ的终边与单位交点为(cosθ,sinθ),结合同角三角函数关系和sinθ=
4
5
,可得B点坐标;
(2)由(1)中结论,结合诱导公式化简,代入可得答案.
解答: 解:(1)∵点A是单位圆与x轴正半轴的交点,点B在第二象限.
设B点坐标为(x,y),
则y=sinθ=
4
5

x=-
1-sin2θ
=-
3
5

即B点坐标为:(-
3
5
4
5

(2)sin(π-θ)+2sin(
π
2
-θ)=sinθ+2cosθ=
4
5
+2×(-
3
5
)
=-
2
5
点评:本题考查的知识点是同角三角函数基本关系的运用,诱导公式,难度不大,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定积分
3
0
9-x2
dx的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)0.064-
1
3
-(-
7
6
)0+(
8
27
)
2
3
(1
7
9
)-0.5

(2)log49•log2732+(lg2)2+2lg2lg5+(lg5)2

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z1=3+4i,z2=1-i,z3=c+(c-2)i(其中i为虚数单位)在复平面内对应的点分别为A、B、C.
(1)若∠BAC是锐角,求实数c的取值范围;
(2)若复数z满足|z-z1|=1,求|z-z2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=α(cos2x+sinxcosx)+b
(1)当a>0时,求f(x)的最小正周期和单调递减区间
(2)当a<0且x∈[0,
π
2
],f(x)的值域是[3,4],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)+1(A>0,ω>0,0<φ<
π
2
)的周期为π,f(
π
4
)=
3
+1,且f(x)得最大值为3.
(1)写出f(x)的表达式;
(2)写出函数f(x)的对称中心,对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x2-3x+2>0的解集为P,关于不等式(x-1)(x+a)>0的解集为q,已知p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,向量
a
=(sin2x , cosx)
b
=(1 , 2cosx)
,f(x)=
a
b

(1)求f(x)的单调递增区间;
(2)若α是第二象限角,f(
α
2
)=
4
2
5
cos(α+
π
4
)cos2α+1
,求cosα-sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

“a>b>0”是“a2>b2”成立的(  )条件.
A、必要不充分
B、充分不必要
C、充要
D、既不充分也不必要

查看答案和解析>>

同步练习册答案