(本小题满分12分)
四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,∥,⊥,为上一点,且.
(Ⅰ)求证⊥;
(Ⅱ)求二面角的正弦值.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知⊙所在的平面,AB是⊙的直径,,是⊙上一点,且,分别为中点。
(1)求证:平面;
(2)求证:;
(3)求三棱锥-的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1;
(2)求证:平面CAA1C1⊥平面CB1D1.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若E,F分别为PC,BD的中点.
(1)求证:平面PAD;
(2)求证:平面PDC平面PAD;
(3)求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。
(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在平行四边形ABCD中,AB=1,BD=,∠ABD=90°,E是BD上的一个动点,现将该平行四边形沿对角线BD折成直二面角A-BD-C,如图2所示.
(1)若F、G分别是AD、BC的中点,且AB∥平面EFG,求证:CD∥平面EFG;
(2)当图1中AE+EC最小时,求图2中二面角A-EC-B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面切于点.
(1)求证:PD⊥平面;
(2)求直线与平面所成的角的正弦值;
(3)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com