精英家教网 > 高中数学 > 题目详情

【题目】已知 ,若,且的图象相邻的对称轴间的距离不小于.

(1)求的取值范围.

(2)若当取最大值时, ,且在中, 分别是角的对边,其面积,求周长的最小值.

【答案】126

【解析】试题分析:1由两向量的坐标利用平面向量的数量积运算法则列出的解析式利用二倍角的正弦、余弦公式化简再利用两角和与差的正弦公式化为一个角的正弦函数图象中相邻的对称轴间的距离不小于得到周期的一半大于等于即可求出的范围;2取最大值1时,由,可得,由可得 由余弦定理可得结合基本不等式可得周长的最小值.

试题解析:(1

又由条件知,所以.

(2)当取最大值1时, ,又

所以,故.

中,

又由余弦定理有:

周长

当且仅当时取得等号.所以, 周长的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线经过点,其倾斜角为,以原点为极点,以轴为非负半轴为极轴,与坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(1)若直线与曲线有公共点,求倾斜角的取值范围;

(2)设为曲线上任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设是平面内相交成角的两条数轴 ,分别是轴,轴正方向同向的单位向量,若向量,则把有序数对叫做向量在坐标系中的坐标,假设.

(1)计算的大小;

(2)设向量,若共线,求实数的值;

(3)是否存在实数,使得与向量垂直,若存在求出的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)已知函数f(x)=ex, g(x)=lnx.

(1)设f(x)在x1处的切线为l1, g(x)在x2处的切线为l2,l1//l2,x1g(x2)的值;

(2)若方程af 2(x)-f(x)-x=0有两个实根,求实数a的取值范围;

(3)设h(x)=f(x)(g(x)-b),h(x)在[ln2,ln3]内单调递减,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆两点,且的周长为.

(1)求椭圆的方程;

(2)已知直线互相垂直,直线且与椭圆交于点两点,直线且与椭圆交于两点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆两点,且的周长为.

(1)求椭圆的方程;

(2)已知直线互相垂直,直线且与椭圆交于点两点,直线且与椭圆交于两点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面是菱形,侧面平面,且.

(Ⅰ)证明:平面

(Ⅱ)若点在线段上,且,试问:在上是否存在一点,使?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1CAB=3BC=5.

)求证:AA1平面ABC

)求二面角A1-BC1-B1的余弦值;

)证明:在线段BC1存在点D,使得ADA1B,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 某创业投资公司拟投资开发某种新能源产品,估计能获得25万元~ 1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%(:设奖励方案函数模型为y=f (x)时,则公司对函数模型的基本要求是:x[251600]时,①f(x)是增函数;f (x) 75恒成立; 恒成立.

(1)判断函数是否符合公司奖励方案函数模型的要求,并说明理由;

(2)已知函数符合公司奖励方案函数模型要求,求实数a的取值范围.

查看答案和解析>>

同步练习册答案