【题目】如图所示,梯形是平面图形的直观图.其中.
(1)如何利用斜二测画法的规则画出原四边形?
(2)在问题(1)中,如何求出水平放置的平面图形与直观图的面积?
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在抗击新型冠状病毒肺炎期间,为响应政府号召,郴州市某单位组织了志愿者30人,其中男志愿者18人,用分层抽样的方法从该单位志愿者中抽取5人去参加某社区的防疫帮扶活动.
(1)求从该单位男、女志愿者中各抽取的人数;
(2)从抽取的5名志愿者中任选2名谈此活动的感受,求选出的2名志愿者中恰有1名男志愿者的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是.
(1)求的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为,第二次取出的小球标号为.
①记“”为事件,求事件的概率;
②在区间内任取2个实数,,求事件“恒成立”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=2cos(2x+)的图象向左平移个单位长度,得到函数y=f(x)的图象.
(1)求f(x)的单调递增区间;
(2)求f(x)在[0,]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某地一天从时的温度变化曲线近似满足函数.
(1)求该地区这一段时间内温度的最大温差.
(2)若有一种细菌在到之间可以生存,则在这段时间内,该细菌最多能存活多长时间?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过市场调查,得到某种产品的资金投入(单位:万元)与获得的利润(单位:千元)的数据,如表所示
资金投入 | 2 | 3 | 4 | 5 |
利润 | 2 | 3 | 5 | 6 |
(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;
(2)该产品的资金投入每增加万元,获得利润预计可增加多少千元?若投入资金万元,则获得利润的估计值为多少千元?
参考公式:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com