精英家教网 > 高中数学 > 题目详情

【题目】已知三棱台ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求证:BC1⊥平面AA1C1C
(2)点D是B1C1的中点,求二面角A1﹣BD﹣B1的余弦值.

【答案】
(1)证明:梯形BB1C1C中,BB1=CC1=B1C1=2,BC=4得: ,从而BC1⊥CC1

因为平面BB1C1C⊥平面ABC,且AC⊥BC,

所以AC⊥平面BB1C1C,因此BC1⊥AC,

因为AC∩CC1=C,所以BC1⊥平面AA1C1C


(2)解:如图,以CA,CB所在直线分别为x轴,y轴,点C为原点建立空间直角坐标系,则A(6,0,0),B(0,4,0),C(0,0,0),C1(0,1, ),B1(0,3, ),D(0,2, ),A1(3,1, ),

平面BB1D的法向量 =(1,0,0),设平面AB1D的法向量为 =(x,y,z),

令z= ,得 ),

所以所求二面角的余弦值是﹣ =﹣


【解析】(1)证明BC1⊥CC1 , BC1⊥AC,即可证明BC1⊥平面AA1C1C(2)以CA,CB所在直线分别为x轴,y轴,点C为原点建立空间直角坐标系,求出平面的法向量,即可求二面角A1﹣BD﹣B1的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数).

1时,求函数上的最大值和最小值;

2时,是否存在实数,当是自然对数底时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,圆轴的正半轴交于点,以点为圆心的圆与圆交于两点.

(1)当时,求的长;

(2)当变化时,求的最小值;

(3)过点的直线与圆A切于点,与圆分别交于点,若点的中点,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年,京津冀等地数城市指数“爆表”,尤其2015年污染最重.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量x(万辆)

1

2

3

4

5

6

7

PM2.5的浓度y(微克/立方米)

28

30

35

41

49

56

62

(Ⅰ)由散点图知yx具有线性相关关系,求y关于x的线性回归方程;

(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;

(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)

参考公式:回归直线的方程是,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项,且满足,其中,设数列的前项和分别为

Ⅰ)若不等式对一切恒成立,求

Ⅱ)若常数且对任意的,恒有,求的值.

Ⅲ)在(Ⅱ)的条件下且同时满足以下两个条件:

ⅰ)若存在唯一正整数的值满足

恒成立.试问:是否存在正整数,使得,若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上且通过点的圆与直线相切.

(1)求圆的方程;

(2)已知直线经过点,并且被圆C截得的弦长为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地棚户区改造建筑平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形是原棚户区建筑用地,测量可知边界万米,万米,万米.

(1)请计算原棚户区建筑用地的面积及的长;

(2)因地理条件的限制,边界不能更改,而边界可以调整,为了提高棚户区建筑用地的利用率,请在圆弧上设计一点,使得棚户区改造后的新建筑用地的面积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是DAC的中点。

1)求证:B1C∥平面A1BD

2)求二面角A1-BD-A的大小;

3)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中(为坐标原点),已知两点,且三角形的内切圆为圆,从圆外一点向圆引切线为切点。

(1)求圆的标准方程.

(2)已知点,且,试判断点是否总在某一定直线上,若是,求出直线的方程;若不是,请说明理由.

(3)已知点在圆上运动,求的最大值和最小值.

查看答案和解析>>

同步练习册答案