精英家教网 > 高中数学 > 题目详情

【题目】已知焦距为2的椭圆W ab0)的左、右焦点分别为A1A2,上、下顶点分别为B1B2,点Mx0y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1MA2MB1MB2的斜率之积为

1)求椭圆W的标准方程;

2)如图所示,点AD是椭圆W上两点,点A与点B关于原点对称,ADAB,点Cx轴上,且ACx轴垂直,求证:BCD三点共线.

【答案】(1);(2)见解析.

【解析】试题分析:(1)根据椭圆的定义和性质,建立方程求出ab即可.

2)联立直线和椭圆方程,利用消元法结合设而不求的思想进行求解即可.

试题解析:

1)由题意可知:2c=2c=1a2-b2=1

Mx0y0)为椭圆W上不在坐标轴上的任意一点,

=a2-),=b2-),

==

==2=,则a2=2b2

a2=2b2=1

椭圆W的标准方程

2)证明:不妨设点Ax11),Dx2y2),B的坐标(-x1-y1),Cx10),

AD在椭圆上,=0,即(x1-x2)(x1+x2+2y1-y2)(y1+y2=0

=-

ADAB

kADkAB=-1=-1-,)=-1

=

kBD-kBC=-=-=0

kBD=kBC

BCD三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区有小学21所中学14所大学7所现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查

求应从小学、中学、大学中分别抽取的学校数目

若从抽取的6所学校中随机抽取2所学校做进一步数据分析

(1)列出所有可能的抽取结果

(2)求抽取的2所学校均为小学的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f1(x)、f2(x)、h(x),如果存在实数a,b使得h(x)=af1(x)+bf2(x),那么称h(x)为f1(x)、f2(x)的和谐函数.
(1)已知函数f1(x)=x﹣1,f2(x)=3x+1,h(x)=2x+2,试判断h(x)是否为f1(x)、f2(x)的和谐函数?并说明理由;
(2)已知h(x)为函数f1(x)=log3x,f2(x)=log x的和谐函数,其中a=2,b=1,若方程h(9x)+th(3x)=0在x∈[3,9]上有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,定义椭圆上的点的“伴随点”为.

(1)求椭圆上的点的“伴随点”的轨迹方程;

(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;

(3)当 时,直线交椭圆 两点,若点 的“伴随点”分别是 ,且以为直径的圆经过坐标原点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,前n项和为SnnN*),{bn}是首项为2的等比数列,且公比大于0b2+b3=12b3=a4-2a1S11=11b4

)求{an}{bn}的通项公式;

)求数列{a2nbn}的前n项和(nN*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC-A1B1Cl中,M,N分别为CC1,A1B1的中点.

(I)证明:直线MN//平面CAB1

(II)BA=BC=BB1,CA=CB1,CA⊥CB1,∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)(单位:万件)与年促销费用(单位:万元)()满足 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2017年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将2017年该产品的利润(单位:万元)表示为年促销费用(单位:万元)的函数;

(2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙ 与⊙ ,以 分别为左右焦点的椭圆 经过两圆的交点。

(Ⅰ)求椭圆的方程;

(Ⅱ)是椭圆上的两点,若直线的斜率之积为,试问的面积是否为定值?若是,求出这个定值;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=(﹣2m2+m+2)xm+1为偶函数.
(1)求f(x)的解析式;
(2)若函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案