精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0]上单调递增,若实数a满足f(log2|a﹣1|)>f(﹣2),则a的取值范围是_____

【答案】

【解析】

由题可得f(x)在[0,+∞)上为减函数,结合函数的奇偶性可将f(log2|a﹣1|)>f(﹣2)转化为﹣2<log2|a﹣1|<2,解不等式可得a的取值范围.

已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0]上单调递增,

f(x)在[0,+∞)上为减函数,

∴f(log2|a﹣1|)>f(﹣2)f(|log2|a﹣1||)>f(2)

|log2|a﹣1||<2﹣2<log2|a﹣1|<2,

<|a﹣1|<4,

解得:﹣3<a<<a<5,

即不等式的解集为(﹣3,)∪(,5);

故答案为(﹣3,)∪(,5).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一商场对5年来春节期间服装类商品的优惠金额(单位:万元)与销售额(单位:万元)之间的关系进行分析研究并做了记录,得到如下表格.

日期

2014

2015

2016

2017

2018

2

4

5

6

8

30

40

60

50

70

(1)画出散点图,并判断服装类商品的优惠金额与销售额是正相关还是负相关;

(2)根据表中提供的数据,求出的回归方程

(3)若2019年春节期间商场预定的服装类商品的优惠金额为10万元,估计该商场服装类商品的销售额.

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l方程为m+2x﹣(m+1y3m70m∈R

1)求证:直线l恒过定点P,并求出定点P的坐标;

2)若直线lx轴,y轴上的截距相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上给定及点,构造点列,…,使得为点绕中心顺时针旋转时所到达的位置,而为点分别绕中心顺时针旋转时所到达的位置,.若对某个,有,试求的各个内角的度数及三个顶点的排列方向.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

1)若圆的切线轴、轴上的截距相等,求切线的方程;

2)若点是圆C上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意实数,定义设函数,则函数的最大值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M与直线相切于点,圆心Mx轴上.

(1)求圆M的方程;

(2)过点M且不与x轴重合的直线与圆M相交于AB两点,O为坐标原点,直线OAOB分别与直线x=8相交于CD两点,记△OAB、△OCD的面积分别是S1S2.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】元宵节灯展后,如图悬挂有6盏不同的花灯需要取下,每次取1盏,共有__________种不同取法.(用数字作答)

查看答案和解析>>

同步练习册答案