精英家教网 > 高中数学 > 题目详情
12.设f(x)=$\frac{(x-1)(x-2)…(x-n)}{(x+1)(x+2)…(x+n)}$,若n=6,则f′(1)的值为-$\frac{1}{42}$.

分析 利用导数的运算法则进行求导即可.

解答 解:若n=6,
则f(x)=$\frac{(x-1)(x-2)…(x-6)}{(x+1)(x+2)…(x+6)}$=(x-1)•$\frac{(x-2)…(x-6)}{(x+1)(x+2)…(x+6)}$,
则f′(x)=(x-1)′•$\frac{(x-2)…(x-6)}{(x+1)(x+2)…(x+6)}$+(x-1)•[$\frac{(x-2)…(x-6)}{(x+1)(x+2)…(x+6)}$]′
=$\frac{(x-2)…(x-6)}{(x+1)(x+2)…(x+6)}$+(x-1)•[$\frac{(x-2)…(x-6)}{(x+1)(x+2)…(x+6)}$]′,
则f′(1)=$\frac{-1•(-2)(-3)(-4)(-5)}{2•3•4•5•6•7}$+0=-$\frac{1}{42}$,
故答案为:-$\frac{1}{42}$.

点评 本题主要考查函数的导数的计算,利用积的导数公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+ax+1,若对于任意x∈R,都有f(1+x)=f(1-x),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若f(x)是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足f($\frac{x}{y}$)=f(x)-f(y),若f(2)=-1,解不等式f(x+3)-f($\frac{1}{x}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将函数f(x)=$\sqrt{3}$sin2x-cos2x的图象向左平移|m|个单位,若所得的图象关于直线x=$\frac{π}{6}$对称,则|m|的最小值为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.0D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的首项为-1,且满足an+1=-$\frac{1}{2}$an-$\frac{3}{4}$,n≥2.
(1)求{an}的通项公式;
(2)设数列bn=$\frac{({a}_{n}+\frac{1}{2})^{2}}{1-({a}_{n}+\frac{1}{2})}$,且{bn}的前n项和为Sn,求证Sn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义在R上的函数,f(1)=1,且对于任意的x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1,若g(x)=f(x)+1-x,则g(2014)的值为-2008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-1|-1,g(x)=-4-|x+1|.
(1)若函数f(x)的值不小于2,求x的取值范围;
(2)若对?x∈R,都有f(x)-t≥g(x)恒成立,试求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.画出函数f(-x)=log2(-x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的通项公式an=$\frac{n+1}{4{n}^{2}(n+2)^{2}}$,求它的前n项和Sn

查看答案和解析>>

同步练习册答案