精英家教网 > 高中数学 > 题目详情
8.已知二次函数f(x)满足f(0)=1,单调减区间是(-∞,1],最小值为-1,
(I)求函数f(x)的解析式;
(2)若x∈[0,3),求函数f(x)的值域.

分析 (I)设函数f(x)=ax2+bx+c,从而可得$\left\{\begin{array}{l}{f(0)=c=1}\\{-\frac{b}{2a}=1}\\{f(1)=a+b+c=-1}\end{array}\right.$,从而解得;
(2)化简f(x)=2x2-4x+1=2(x-1)2-1,从而求函数的值域.

解答 解:(I)设函数f(x)=ax2+bx+c,由题意得,
$\left\{\begin{array}{l}{f(0)=c=1}\\{-\frac{b}{2a}=1}\\{f(1)=a+b+c=-1}\end{array}\right.$,
解得,a=2,b=-4,c=1;
故其解析式为f(x)=2x2-4x+1;
(2)f(x)=2x2-4x+1=2(x-1)2-1,
∵x∈[0,3),
∴(x-1)2∈[0,4),
∴2(x-1)2-1∈[-1,7),
故函数f(x)的值域为[-1,7).

点评 本题考查了二次函数的解析式的求法及配方法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设函数y=cos$\frac{1}{2}$πx的图象位于y轴右侧,所有的对称中心从左到右依次为A1、A2、…An,则A10的坐标是(19,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f($\frac{1}{2}$log${\;}_{\frac{1}{2}}$x)=$\frac{x-1}{x+1}$
(1)求f(x)的解析式;
(2)判断f(x)的奇偶性;
(3)求满足f(23-2x)+$\frac{15}{17}$≤0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左右焦点分别为F1、F2,若双曲线上一点P满足|PF1|•|PF2|=55,求点P到焦点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:
(1)2x-4<0;
(2)求2$\sqrt{2}$•3$\sqrt{{2}^{2}}$的值;
(3)lg2+lg5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知三点A(1,2),B(-6,x),C(-1,4)共线,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.与-463°终边相同的角是(  )
A.157°B.257°C.-157°D.-257°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在极坐标系中,点(1,0)和点(1,$\frac{π}{2}$)的距离为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,四棱锥P-ABCD的底面为等腰梯形,AB∥DC,AB=2AD=2,PA⊥平面ABCD,∠ABC=60°
(1)求AC的长;
(2)证明:BC⊥PC;
(3)若PA=AB,求PC与平面PAD所成角的正弦值.

查看答案和解析>>

同步练习册答案