精英家教网 > 高中数学 > 题目详情
已知直线 L1:y=x+1与椭圆 
x2
4
+
y2
3
=1相交于A、B两点,试求弦AB的中点P的坐标.
考点:直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:根据已知直线方程与椭圆方程,联立方程组,利用韦达定理,即可求解中点坐标.
解答: 解:由题意联立方程可得:可得
y=x+1
x2
4
+
y2
3
=1
,消去y可得:7x2+8x-8=0
设A(x1,y1)B(x2,y2),AB的中点P(x0,y0
则x0=
x1+x2
2
=-
4
7
,x0代入直线方程可得:y0=
3
7

中点坐标为:(-
4
7
3
7
)

弦AB的中点P的坐标:(-
4
7
3
7
)
点评:本题主要考查了直线与椭圆的位置关系:相交,处理此类问题的一般方法是联立方程,通过方程的根与系数的关系进行求解
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=(
7
4
)
2-x
的定义域是(  )
A、RB、(-∞,2]
C、[2,+∞)D、[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
,∠BDC=60°.
(1)求异面直线AB与CD所成角大小的余弦值.
(2)截面EFGH∥AB,截面EFGH∥CD,求证:截面EFGH为平行四边形.
(3)在(2)条件下,求截面EFGH面积的最大值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a3=5,a4-2a2=3,又等比数列{bn}中,b1=3且公比q=3.
(1)求数列{an},{bn}的通项公式;
(2)若cn=an+bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC1∥平面CDB1
(2)求异面直线AC与BC1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(a+1)lnx+ax2+1.
(1)讨论函数f(x)的单调性;
(2)设a<-1,若对任意x1、x2恒有|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax(a≠0),g(x)=lnx,f(x)图象与x轴异于原点的交点M处的切线为l1,g(x-1)与x轴的交点N处的切线为l2,并且l1与l2平行.
(1)求f(2)的值;
(2)已知实数t∈R,求函数y=f[xg(x)+t],x∈[1,e]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax2,曲线y=f(x)在点(1,f(1))处的切线在x轴上的截距为
1
2-e

(1)求实数a的值;
(2)设g(x)=f(2x)-f(x),求证:g(x)在R上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式2-x2=|x-a|至少有一个负数解,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案