精英家教网 > 高中数学 > 题目详情
13.已知点P在直线x-2y-1=0上,点Q在直线x-2y+3=0上,线段PQ的中点为M(x0,y0)且y0>-x0+2,则$\sqrt{({x}_{0}-4)^{2}+{y}_{0}^{2}}$的取值范围是[$\sqrt{5}$,+∞).

分析 由题意可得x0=2y0-1,代入消元后由二次函数区间的最值可得.

解答 解:∵直线x-2y-1=0与直线x-2y+3=0平行,
∴线段PQ的中点为M(x0,y0)在与之平行的直线x-2y+1=0上,
∴x0-2y0+1=0,∴x0=2y0-1,
∵y0>-x0+2,∴y0>-2y0+1+2,解得y0>1,
∴$\sqrt{({x}_{0}-4)^{2}+{y}_{0}^{2}}$=$\sqrt{(2{y}_{0}-5)^{2}+{{y}_{0}}^{2}}$=$\sqrt{5{{y}_{0}}^{2}-20{y}_{0}+25}$,
由二次函数可知当y0=-$\frac{-20}{2×5}$=2(满足y0>1)时上式取最小值$\sqrt{5×{2}^{2}-20×2+25}$=$\sqrt{5}$,
∴$\sqrt{({x}_{0}-4)^{2}+{y}_{0}^{2}}$的取值范围为:[$\sqrt{5}$,+∞).
故答案为:[$\sqrt{5}$,+∞).

点评 本题考查直线间的距离,涉及二次函数区间的最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设a>b>1,c<0,下列结论中错误的是(  )
A.$\frac{c}{a}$>$\frac{c}{b}$B.ac<bcC.|c|a>|c|bD.logb(a-c)>logb(b-c)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线ax+2by-2=0(a≥b>0),始终平分圆x2+y2-4x-2y-8=0的周长,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.1B.3+2$\sqrt{2}$C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=x$\sqrt{1-x}$,g(x)=$\sqrt{1-x}$,则f(x)•g(x)的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算${∫}_{1}^{2}$($\frac{1}{x}$+x)dx=ln2+$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1-x}{ax}$+lnx.
(1)若函数f(x)在(2,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在$[{\frac{1}{2}\;,\;\frac{3}{2}}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=-x3+2ax2-a2x(x∈R),其中a∈R
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≠0时,求函数f(x)的极大值和极小值;
(Ⅲ)当a>3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k2-cos2x)对任意的x∈R恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数的对称中心为M(x0,y0),记函数f(x)的导函数为f′(x),函数f′(x)的导函数为f″(x),则有f″(x0)=0.若函数f(x)=x3-3x2,则可求得:f($\frac{1}{2012}$)+f($\frac{2}{2012}$)+…+f($\frac{4022}{2012}$)+f($\frac{4023}{2012}$)=-8046.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且$\frac{{A}_{n}}{{B}_{n}}$=$\frac{5n+63}{n+3}$,则使得$\frac{{a}_{n}}{{b}_{n}}$为整数的个数是7.

查看答案和解析>>

同步练习册答案