精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=n2
(1)求{an}的通项公式an
(2)设bn=
1
anan+1
,求证b1+b2+b3+…+bn
1
2
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由an=
S1,n=1
Sn-Sn-1,n≥2
,能求出{an}的通项公式.
(2)证明:bn=
1
anan+1
=
1
2
1
2n-1
-
1
2n+1
),由此利用裂项求和法能证明b1+b2+b3+…+bn
1
2
解答: (1)解:∵数列{an}的前n项和Sn=n2
∴n=1时,a1=S1=1;
n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时,2n-1=1=an
∴an=2n-1.
(2)证明:bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),
∴b1+b2+b3+…+bn
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1

=
1
2
-
1
4n+2
1
2

∴b1+b2+b3+…+bn
1
2
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出命题:①y=sinx是增函数;②y=arcsinx-arctanx是奇函数;③y=arccos|x|为增函数;④y=
π
2
-arccosx为奇函数.其中正确的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

小李练习射击,每次击中目标的概率为
1
3
,用ξ表示小李射击5次击中目标的次数,则ξ的均值Eξ与方差Dξ的值分别是(  )
A、
5
3
9
10
B、
5
3
5
3
C、
5
3
10
9
D、
5
3
2
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
2sinα-cosα
sinα+2cosα
=
3
4

(1)求tanα的值;
(2)求sin2α+sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2
x-2
(x∈R,且x≠2).
(1)求f(x)的单调区间;
(2)若函数g(x)=x2-2ax与函数f(x)在x∈[0,1]上有相同的值域,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,A(3,2)、B(-1,5),C点在直线3x-y+3=0上,若△ABC的面积为10,求C点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)解不等式:
2-x
4+x
>0;
(Ⅱ)解关于x的不等式:x2-(a+1)x+a≥0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

求由抛物线y2=4x与直线y=x-3所围成的平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,且满足:(2b-c)•cosA-acosC=0.
(1)求角A的大小;
(2)若a=
7
,S△ABC=
3
3
2
,求b+c的值.

查看答案和解析>>

同步练习册答案