精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的偶函数,且f(x-
3
2
)=f(x+
1
2
)
恒成立,当x∈[2,3]时,f(x)=x,则当x∈(-1,0)时,函数f(x)的解析式为
f(x)=2-x
f(x)=2-x
分析:由已知中f(x-
3
2
)=f(x+
1
2
)
恒成立得到函数是以2为周期的周期函数,又由函数f(x)是定义在R上的偶函数,结合当x∈[2,3]时,f(x)=x,我们易得,x∈(-1,0)时时,函数f(x)的表达式.
解答:解:因为f(x-
3
2
)=f(x+
1
2
)
恒成立⇒f(x)=f(x+2)⇒周期T=2.
∴x∈(-1,0)⇒-x∈(0,1)⇒-x+2∈(2,3).
∵f(x)是定义在R上的偶函数;
且当x∈[2,3]时,f(x)=x
∴x∈(-1,0),可得f(x)=f(-x)=f(-x+2)=-x+2.
即x∈(-1,0)时,f(x)=-x+2.
故答案为:f(x)=-x+2.
点评:本题主要考察函数的周期性以及奇偶性.解决本题的关键在于根据f(x-
3
2
)=f(x+
1
2
)
恒成立得到函数是以2为周期的周期函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案