为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:
规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.
(1)试用上述样本数据估计甲、乙两厂生产的优等品率;
(2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望;
(3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.
(1)甲厂抽取的样本中优等品率为,乙厂抽取的样本优等品率为;(2);(3).
解析试题分析:(1)由古典概型计算公式可求得甲乙两厂生产的优等品率;(2)首先的取值为0,1,2,3,结合超几何分布及排列组合可求得的值,进而可得的分布列及其数学期望;(3)首先将所求概率分解为基本事件的和,即A=“抽取的优等品数甲厂2件,乙厂0件”,B=“抽取的优等品数甲厂3件,乙厂1件”,再利用二项分布求解.
试题解析:(1)甲厂抽取的样本中优等品有6件,优等品率为 1分
乙厂抽取的样本中优等品有5件,优等品率为 2分
(2)的取值为0,1,2,3. 3分
5分
的分布列为
6分0 1 2 3
的数学期望为 8分
(3) 抽取的优等品数甲厂恰比乙厂多2件包括2个事件,即A=“抽取的优等品数甲厂2件,乙厂0件”,B=“抽取的优等品数甲厂3件,乙厂1件” 9分
10分
11分
抽取的优等品数甲厂恰比乙厂多2件的概率为 12分
考点:1、排列组合;2、茎叶图;3、超几何分布;4、数学期望.
科目:高中数学 来源: 题型:解答题
某旅游推介活动晚会进行嘉宾现场抽奖活动,抽奖规则是:抽奖盒中装有个大小相同的小球,分别印有“多彩十艺节”和“美丽泉城行”两种标志,摇匀后,参加者每次从盒中同时抽取两个小球,若抽到两个球都印有“多彩十艺节”标志即可获奖.
(I)活动开始后,一位参加者问:盒中有几个“多彩十艺节”球?主持人笑说:我只知道从盒中同时抽两球不都是“美丽泉城行”标志的概率是,求抽奖者获奖的概率;
(Ⅱ)上面条件下,现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求的分布列及.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有7名奥运会志愿者,其中志愿者通晓日语,通晓俄语, 通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求被选中的概率;(5分);(2)求不全被选中的概率.(5分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某数学老师对本校2013届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取的20名学生的成绩进行分析,分数用茎叶图记录如图所示(部分数据丢失),得到频率分布表如下:
(1)求表中的值及分数在范围内的学生数,并估计这次考试全校学生数学成绩及格率(分数在范围为及格);
(2)从大于等于110分的学生中随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组,……,第五组.右图是按上述分组方法得到的频率分布直方图.
(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(II)设、表示该班某两位同学的百米测试成绩,且已知,求事件“”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
一次购物量(件) | 1≤n≤3 | 4≤n≤6 | 7≤n≤9 | 10≤n≤12 | n≥13 |
顾客数(人) | 20 | 10 | 5 | ||
结算时间(分钟/人) | 0.5 | 1 | 1.5 | 2 | 2.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
将编号为1,2,3,4的四个小球,分别放入编号为1,2,3,4的四个盒子,每个盒子中有且仅有一个小球.若小球的编号与盒子的编号相同,得1分,否则得0分.记为四个小球得分总和.
(1)求时的概率;
(2)求的概率分布及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)甲、乙等名同学参加某高校的自主招生面试,已知采用抽签的方式随机确定各考生的面试顺序(序号为).
(Ⅰ)求甲、乙两考生的面试序号至少有一个为奇数的概率;
(Ⅱ)记在甲、乙两考生之间参加面试的考生人数为,求随机变量的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某射手每次射击击中目标的概率均为,且每次射击的结果互不影响
(I)假设这名射手射击3次,求至少2次击中目标的概率
(II)假设这名射手射击3次,每次击中目标10分,未击中目标得0分,在3次射击中,若有两次连续击中目标,而另外一次未击中目标,则额外加5分;若3次全部击中,则额外加10分。用随机变量§表示射手射击3次后的总得分,求§的分布列和数学期望。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com