精英家教网 > 高中数学 > 题目详情
(2012•桂林一模)半径为4的球面上有A,B,C,D四点,且满足AB⊥AC,AC⊥AD,AD⊥AB,则S△ABC+S△ACD+S△ADB的最大值为(S为三角形的面积)
32
32
分析:设AB=a,AC=b,AD=c,根据AB⊥AC,AC⊥AD,AD⊥AB,可得a2+b2+c2=4R2=64,而S△ABC+S△ACD+S△ADB=
1
2
(ab+ac+bc),利用基本不等式,即可求得最大值为.
解答:解:设AB=a,AC=b,AD=c,
∵AB⊥AC,AC⊥AD,AD⊥AB,∴a2+b2+c2=4R2=64
∴S△ABC+S△ACD+S△ADB=
1
2
(ab+ac+bc)≤
1
2
(a2+b2+c2)=32
∴S△ABC+S△ACD+S△ADB的最大值为32
故答案为:32.
点评:本题考查求内接几何体,考查基本不等式的运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•桂林一模)如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为平行四边形,且AD=2,AB=AA1=4,∠BAD=60°,E为AB的中点.
(Ⅰ)证明:AC1∥平面EB1C;
(Ⅱ)求直线ED1与平面EB1C所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•桂林一模)已知y=f(x)是其定义域上的单调递增函数,它的反函数是y=f-1(x),且y=f(x+1)的图象过A(-4,0),B(2,3)两点,若|f-1(x+1)|≤3,则x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•桂林一模)差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•桂林一模)点P(cos300°,sin300°)在直角坐标平面上位于(  )

查看答案和解析>>

同步练习册答案