精英家教网 > 高中数学 > 题目详情

【题目】已知a∈R,若f(x)=(x+ )ex在区间(0,1)上只有一个极值点,则a的取值范围为(
A.a>0
B.a≤1
C.a>1
D.a≤0

【答案】A
【解析】解:∵f(x)=(x+ )ex , ∴f′(x)=( )ex
设h(x)=x3+x2+ax﹣a,
∴h′(x)=3x2+2x+a,
a>0,h′(x)>0在(0,1)上恒成立,即函数h(x)在(0,1)上为增函数,
∵h(0)=﹣a<0,h(1)=2>0,
∴h(x)在(0,1)上有且只有一个零点x0 , 使得f′(x0)=0,
且在(0,x0)上,f′(x)<0,在(x0 , 1)上,f′(x)>0,
∴x0为函数f(x)在(0,1)上唯一的极小值点;
a=0时,x∈(0,1),h′(x)=3x2+2x>0成立,函数h(x)在(0,1)上为增函数,
此时h(0)=0,∴h(x)>0在(0,1)上恒成立,
即f′(x)>0,函数f(x)在(0,1)上为单调增函数,函数f(x)在(0,1)上无极值;
a<0时,h(x)=x3+x2+a(x﹣1),
∵x∈(0,1),∴h(x)>0在(0,1)上恒成立,
即f′(x)>0,函数f(x)在(0,1)上为单调增函数,函数f(x)在(0,1)上无极值.
综上所述,a>0.
故选:A.
求导数,分类讨论,利用极值、函数单调性,即可确定a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点

(1)求椭圆的标准方程;

(2)已知椭圆的左焦点为,左、右顶点分别为,经过点的直线与椭圆交于两点,记的面积分别为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车的推广给消费者带来全新消费体验,迅速赢得广大消费者的青睐,然而,同时也暴露出管理、停放、服务等方面的问题,为了了解公众对共享单车的态度(提倡或不提倡),某调查小组随机地对不同年龄段50人进行调查,将调查情况整理如下表:

并且,年龄在的人中持“提倡”态度的人数分别为5和3,现从这两个年龄段中随机抽取2人征求意见.

(Ⅰ)求年龄在中被抽到的2人都持“提倡”态度的概率;

(Ⅱ)求年龄在中被抽到的2人至少1人持“提倡”态度的概率.

【答案】(1);(2).

【解析】试题分析:(1)年龄在[20,25)中共有6人,其中持提倡态度的人数为5,其中抽两人,基本事件总数n=15,被抽到的2人都持提倡态度包含的基本事件个数m=10,由此能求出年龄在[20,25)中被抽到的2人都持提倡态度的概率.(2)年龄在[40,45)中共有5人,其中持提倡态度的人数为3,其中抽两人,基本事件总数n′=10,年龄在[40,45)中被抽到的2人至少1人持提倡态度包含的基本事件个数m′=9,由此能求出年龄在[40,45)中被抽到的2人至少1人持提倡态度的概率.

解析:

(1)设在中的6人持“提倡”态度的为 ,持“不提倡”态度的为.

总的基本事件有(),(),(),(),(),(),(),(),(),(),(),(),(),(),().共15个,其中两人都持“提倡”态度的有10个,

所以P==

(2)设在中的5人持“提倡”态度的为 ,持“不提倡”态度的为 .

总的基本事件有(),(),(),(),(),(),(),(),(),(),共10个,其中两人都持“不提倡”态度的只有()一种,所以P==

型】解答
束】
22

【题目】以平面直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系已知圆的极坐标方程为直线的参数方程为为参数),若交于两点.

(Ⅰ)求圆的直角坐标方程

(Ⅱ)设的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是实数,已知奇函数,

(1)求的值;

(2)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图象恒过(0,0)(1,1)两点,则称函数“0-1函数”.

(1)判断下面两个函数是否是“0-1函数,并简要说明理由:

.

(2)若函数“0-1函数,求

(3)设 ,定义在R上的函数满足:① , R,均有 “0-1函数,求函数的解析式及实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜率为1,过抛物线的焦点的直线被抛物线所截得的弦长为

A. 8 B. 6 C. 4 D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形, 底面.

1)证明:平面平面

2)若二面角的大小为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图象恒过(0,0)(1,1)两点,则称函数“0-1函数”.

(1)判断下面两个函数是否是“0-1函数,并简要说明理由:

.

(2)若函数“0-1函数,求

(3)设 ,定义在R上的函数满足:① , R,均有 “0-1函数,求函数的解析式及实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

同步练习册答案