精英家教网 > 高中数学 > 题目详情
15.已知平面上三点A,B,C,$\overrightarrow{BC}$=(2-k,3),$\overrightarrow{AC}$=(2,4).
(1)若三点A,B,C不能构成三角形,则实数k的值是$\frac{1}{2}$,
(2)若△ABC为直角三角形,且∠B=90°,则k的值是3或-1.

分析 (1)根据条件利用A,B,C三点共线,所以存在实数λ,有 $\overrightarrow{BC}$=λ $\overrightarrow{AC}$,带入坐标即可求k.
(2)△ABC为直角三角形,所以两条直角边相互垂直,所以对应的两个向量的数量积为0,从而求出k的值.

解答 解:(1)∵A,B,C三点不能构成三角形,∴三点A,B,C共线;
∴存在实数λ,使$\overrightarrow{BC}$=λ$\overrightarrow{AC}$;
∴$\left\{\begin{array}{l}2-k=2λ\\ 3=4λ\end{array}\right.$,解得k=$\frac{1}{2}$.
∴k满足的条件是:k=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
(2)$\overrightarrow{BC}$=(2-k,3),$\overrightarrow{AC}$=(2,4).
$\overrightarrow{AB}$=$\overrightarrow{CB}$-$\overrightarrow{CA}$=(k-2,-3)-(-2,-4)=(k,1)
∵△ABC为直角三角形;
∴若∠B是直角,则$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,∴$\overrightarrow{AB}$•$\overrightarrow{BC}$=-k2+2k+3=0,解得k=-1或3;
综上可得k的值为:3或-1.
故答案为:3或-1.

点评 本题考查的知识点为:共线向量基本定理,向量的相等,数量积的坐标运算,相互垂直的两向量的数量积为0,注意第二问对于角为直角的讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.用数学归纳法证明$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}>\frac{13}{24}$,由n=k到n=k+1左边需添加的项为(  )
A.$\frac{1}{2(k+1)}$B.$\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}$
C.$\frac{1}{2k+1}+\frac{1}{2k+2}+\frac{1}{k+1}$D.$\frac{1}{2k+1}+\frac{1}{2k+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=(log${\;}_{\frac{1}{4}}$x)2-(log${\;}_{\frac{1}{4}}$x)+5,x∈[$\frac{1}{4}$,4],则f(x)的最小值是$\frac{19}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)是R上的偶函数,且满足f(x+3)=-f(x),当x∈(0,2)时f(x)=2x3,则f(14)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2+b|x-1|,其中a,b∈(-4,4)且a≠0
(Ⅰ)当a∈(0,4),b=1时,求函数f(x)在[0,2]上的最小值;
(Ⅱ)若存在实数c,使函数g(x)=f(x)-c有四个不同的零点,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=$\frac{{\sqrt{1-x}}}{{{x^2}-4}}$,其定义域为(  )
A.(-∞,1]B.(-∞,2]C.(-∞,-2)∪(-2,1]D.[1,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{{x^2}+3}}{x+1}$.
(1)求函数f(x)在区间[0,2]上的最值;
(2)若关于x的方程(x+1)f(x)-ax=0在区间(1,4)内有两个不等实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的函数$f(x)={(\frac{1}{2})^{|x-m|}}-1$(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.b<a<cC.c<a<bD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0),若圆C上不存在点P,使得∠APB为直角,则实数m的取值范围是(0,4)∪(6,+∞).

查看答案和解析>>

同步练习册答案