分析 (1)根据条件利用A,B,C三点共线,所以存在实数λ,有 $\overrightarrow{BC}$=λ $\overrightarrow{AC}$,带入坐标即可求k.
(2)△ABC为直角三角形,所以两条直角边相互垂直,所以对应的两个向量的数量积为0,从而求出k的值.
解答 解:(1)∵A,B,C三点不能构成三角形,∴三点A,B,C共线;
∴存在实数λ,使$\overrightarrow{BC}$=λ$\overrightarrow{AC}$;
∴$\left\{\begin{array}{l}2-k=2λ\\ 3=4λ\end{array}\right.$,解得k=$\frac{1}{2}$.
∴k满足的条件是:k=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
(2)$\overrightarrow{BC}$=(2-k,3),$\overrightarrow{AC}$=(2,4).
$\overrightarrow{AB}$=$\overrightarrow{CB}$-$\overrightarrow{CA}$=(k-2,-3)-(-2,-4)=(k,1)
∵△ABC为直角三角形;
∴若∠B是直角,则$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,∴$\overrightarrow{AB}$•$\overrightarrow{BC}$=-k2+2k+3=0,解得k=-1或3;
综上可得k的值为:3或-1.
故答案为:3或-1.
点评 本题考查的知识点为:共线向量基本定理,向量的相等,数量积的坐标运算,相互垂直的两向量的数量积为0,注意第二问对于角为直角的讨论.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2(k+1)}$ | B. | $\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}$ | ||
C. | $\frac{1}{2k+1}+\frac{1}{2k+2}+\frac{1}{k+1}$ | D. | $\frac{1}{2k+1}+\frac{1}{2k+2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1] | B. | (-∞,2] | C. | (-∞,-2)∪(-2,1] | D. | [1,2)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | a<c<b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com