精英家教网 > 高中数学 > 题目详情
13.以下关于命题的说法正确的有②③(填写所有正确命题的序号).
①“若log2a>0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数”是真命题;
②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;
③命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.
④命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题.

分析 ①由对数函数的图象与性质得出命题错误;
②写出该命题的否命题即可判断正误;
③根据命题与它的逆否命题是等价命题,即可判断正误;
④举例说明该命题的逆命题是假命题.

解答 解:对于①,当log2a>0时,a>1,
∴函数f(x)=logax(a>0,a≠1)在其定义域内是增函数,①错误;
对于②,命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”,∴②正确;
对于③,命题“若a∈M,则b∉M”的逆否命题是“若b∈M,则a∉M”,
则两个命题是等价命题,∴③正确;
对于④,命题“若x,y都是偶数,则x+y也是偶数”的逆命题为
“若x+y是偶数,则x、y都是偶数”,它是假命题,如1+1=2,但1是奇数,∴④错误.
综上,正确的命题是②③.
故答案为:②③.

点评 本题考查了命题真假的判断问题,也考查了对数函数的性质与应用问题,考查了四种命题之间的关系,
是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列4个不等式:
(1)${∫}_{0}^{1}$$\sqrt{x}$dx<${∫}_{0}^{1}$$\root{3}{x}dx$; 
(2)${∫}_{0}^{\frac{π}{4}}$sinxdx<${∫}_{0}^{\frac{π}{4}}$cosxdx;
(3)${∫}_{0}^{1}$e-xdx<${∫}_{0}^{1}$e${\;}^{-{x}^{2}}$dx;    
(4)${∫}_{0}^{2}$sinxdx<${∫}_{0}^{2}$xdx.
能够成立的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在四边形ABCD中,AB=CD=1,BC=$\sqrt{3}$,且∠B=90°,∠BCD=120°,记向量$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow{b}$,则$\overrightarrow{AD}$=(  )
A.$\frac{2\sqrt{3}}{3}\overrightarrow{a}$-(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$B.-$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$C.-$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1-$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$D.$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某公司计划2011年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过180000元,甲、乙两个电视台的广告收费标准分别为1000元/分钟和400元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为3000元和2000元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知关于x的不等式|2x+1|-|x-1|≤log2a(其中a>0).
(1)当a=4时,求不等式的解集;
(2)设f(x)=|2x+1|-|x-1|,若不等式f(x)≤log2a有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在某项测量中,测量结果ξ服从正态分布N(0,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.3,则ξ在(1,+∞)内取值的概率为(  )
A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x-a|,(a∈R).
(1)若当0≤x≤4时,f(x)≤2恒成立,求实数a的取值;
(2)当0≤a≤3时,求证:f(x+a)+f(x-a)≥f(ax)-af(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.P为椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上一点,F1、F2分别为左、右焦点,若|PF1|,|F1F2|,|PF2|成等比数列,则△PF1F2的面积为(  )
A.2$\sqrt{3}$B.4$\sqrt{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.锐角α的终边交单位圆于点P($\frac{1}{2}$,m),则sinα=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案