精英家教网 > 高中数学 > 题目详情

在等比数列{an}中,an>0 (n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3与a5的等比中项为2.
(1)求数列{an}的通项公式
(2)设bn=log2an,求数列{|bn|}的前n项和Tn

解:(1)∵{an} 为等比数列,∴
∴由题意得
,∴a3+a5=±5,
又∵an>0,∴a3+a5>0,∴a3+a5=5,
又 与a5 的等比中项为2.∴a3a5=4,
∴a3=1,a5=4 或a3=4,a5=1,
又∵q∈(0,1),∴a3=4,a5=1,
∴a1=16,

(2)bn=log2an=5-n,
∵bn+1-bn=-1,
∴{bn} 是等差数列,则其前n 的和为

又∵当n≤5,n∈N*时,bn≥0;
当n>5,n∈N*时,bn<0,
∴当n≤5,n∈N*时,Tn=|b1|+|b2|+|b3|+…+|bn|=b1+b2+b3+…+bn
=
当n>5,n∈N*时,Tn=|b1|+|b2|+|b3|+…+|bn|=b1+b2+b3+b4+b5-b6-b7-…-bn
=S5-(Sn-S5)=2S5-Sn
=
∴Tn=,n∈N*
分析:(1)将数列的已知条件利用等比数列的性质,用解方程组求出a3,a5,进而求出首项与公比,利用等比数列的通项公式求出数列{an}的通项公式.
(2)求出数列{bn}的通项,利用等差数列的前n项和公式求出数列{bn}的前n项和,进而通过bn的正负来寻找Tn与Sn的关系.
点评:解决等比数列、等差数列两个特殊数列的有关问题,常利用它们的通项公式、前n项和公式列出方程组,通过解方程组求出通项和公差、公比再求其他量即可,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案