【题目】若存在实数k,b,使得函数和对其定义域上的任意实数x同时满足:且,则称直线:为函数和的“隔离直线”.已知,(其中e为自然对数的底数).试问:
(1)函数和的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由;
(2)函数和是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由.
【答案】(1)存在,交点坐标为;(2)存在,
【解析】
(1)构造函数,求导得到函数的单调区间,得到函数在处取得最小值为0,得到答案.
(2)设直线,根据得到,再证明恒成立,令,求导得到单调区间,计算最值得到证明.
(1)∵,
∴,令,得,
当时,,时,,
故当时,取到最小值,最小值是0,
从而函数和的图象在处有公共点,交点坐标为.
(2)由(1)可知,函数和的图象在处有公共点,
因此存在和的隔离直线,那么该直线过这个公共点,
设隔离直线的斜率为k,则隔离直线方程为,
即,
由,可得在上恒成立,
则,只有,
此时直线方程为:,下面证明恒成立,
令,
,当时,,
当时,函数单调递减;时,,函数单调递增,
则当时,取到最小值是0,
所以,则当时恒成立.
∴函数和存在唯一的隔离直线.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的右焦点为,过点且垂直于轴的弦长为3,直线与圆相切,且与椭圆交于,两点,为椭圆的右顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)用,分别表示和的面积,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天干地支纪年法源于中国,中国自古便有十天干与十二地支,十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天于回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推已知1949年为“己丑”年,那么到中华人民共和国成立70年时为( )
A.丙酉年B.戊申年C.己申年D.己亥年
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次知识竞赛规则如下:在主办方预设的7个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.7,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率等于( )
A.0.07497B.0.92503C.0.1323D.0.6174
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,△PAD为等边三角形,AB=ADCD=2,∠BAD=∠ADC=90°,∠PDC=60°,E为BC的中点.
(1)证明:AD⊥PE.
(2)求直线PA与平面PDE所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在矩形ABCD中,,,沿矩形对角线BD将折起形成四面体ABCD,在这个过程中,现在下面四个结论:①在四面体ABCD中,当时,;②四面体ABCD的体积的最大值为;③在四面体ABCD中,BC与平面ABD所成角可能为;④四面体ABCD的外接球的体积为定值.其中所有正确结论的编号为( )
A.①④B.①②C.①②④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点是正方体中的侧面上的一个动点,则下列结论正确的是( )
A.点存在无数个位置满足
B.若正方体的棱长为1,三棱锥的体积最大值为
C.在线段上存在点,使异面直线与所成的角是
D.点存在无数个位置满足到直线和直线的距离相等.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com